
Workflows using Pegasus

Pegasus Workflow Management System

Karan Vahi

http://pegasus.isi.edu

Pegasus 2

Compute Pipelines
Building Blocks

Compute Pipelines
Allows scientists to connect different codes together and
execute their analysis

Pipelines can be very simple (independent or parallel) jobs
or complex represented as DAG’s

Helps users to automate scale up

However, it is still up-to user to figure out

Data Management
How do you ship in the small/large amounts data required by
your pipeline and protocols to use?

How best to leverage different infrastructure setups
OSG has no shared filesystem while XSEDE and your local
campus cluster has one!

Debug and Monitor Computations
Correlate data across lots of log files
Need to know what host a job ran on and how it was invoked

Restructure Workflows for Improved Performance
Short running tasks? Data placement

http://pegasus.isi.edu

Pegasus http://pegasus.isi.edu 3

Automate

Recover

Debug

Why Pegasus?

Automates complex, multi-stage processing pipelines

Enables parallel, distributed computations

Automatically executes data transfers

Reusable, aids reproducibility

Records how data was produced (provenance)

Handles failures with to provide reliability

Keeps track of data and files

NSF funded project since 2001,
with close collaboration with
HTCondor team

Pegasus http://pegasus.isi.edu 4

Basic concepts…

Key Pegasus Concepts

Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine +
HTCondor scheduler/broker

Pegasus maps workflows to infrastructure
DAGMan manages dependencies and reliability
HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs
Nodes: jobs, edges: dependencies
No while loops, no conditional branches
Jobs are standalone executables

Planning occurs ahead of execution

Planning converts an abstract workflow into a concrete, executable workflow
Planner is like a compiler

Pegasus https://pegasus.isi.edu 5

Pegasus https://pegasus.isi.edu 6

cleanup job
Removes unused data

stage-in job

stage-out job

registration job

Transfers the workflow input data

Transfers the workflow output data

Registers the workflow output data

DAGdirected-acyclic graphsDAG in XML

Portable Description
Users do not worry about
low level execution details

abstract
workflow

executable
workflow

transformation
executables (or programs)
platform independent

logical filename (LFN)
platform independent (abstraction)

Pegasus http://pegasus.isi.edu 7

Pegasus also provides tools to
generate the abstract workflow

DAG in XML

Pegasus http://pegasus.isi.edu 8

An example
Split Workflow

#!/usr/bin/env python

import os, pwd, sys, time
from Pegasus.DAX3 import *

Create an abstract dag
dax = ADAG("split")

webpage = File("pegasus.html")

the split job that splits the webpage into smaller chunks
split = Job("split")
split.addArguments("-l","100","-a","1",webpage,"part.")
split.uses(webpage, link=Link.INPUT)
associate the label with the job. all jobs with same label
are run with PMC when doing job clustering
split.addProfile(Profile("pegasus","label","p1"))
dax.addJob(split)

we do a parmeter sweep on the first 4 chunks created
for c in "abcd":

part = File("part.%s" % c)
split.uses(part, link=Link.OUTPUT, transfer=False, register=False)
count = File("count.txt.%s" % c)
wc = Job("wc")
wc.addProfile(Profile("pegasus","label","p1"))
wc.addArguments("-l",part)
wc.setStdout(count)
wc.uses(part, link=Link.INPUT)
wc.uses(count, link=Link.OUTPUT, transfer=True, register=True)
dax.addJob(wc)

#adding dependency
dax.depends(wc, split)

f = open(“split.dax”, "w")
dax.writeXML(f)
f.close()

Visualization Tools:
pegasus-graphviz
pegasus-plots

https://pegasus.isi.edu/documentation/tutorial_submitting_wf.php

https://pegasus.isi.edu/documentation/tutorial_submitting_wf.php

Pegasus http://pegasus.isi.edu 9

Pegasus
dashboard

web interface for monitoring
and debugging workflows

Real-time monitoring of
workflow executions. It shows

the status of the workflows and
jobs, job characteristics, statistics

and performance metrics.
Provenance data is stored into a

relational database.

Real-time Monitoring
Reporting
Debugging

Troubleshooting
RESTful API

Pegasus http://pegasus.isi.edu 10

Pegasus
dashboard

web interface for monitoring
and debugging workflows

Real-time monitoring of
workflow executions. It shows

the status of the workflows and
jobs, job characteristics, statistics

and performance metrics.
Provenance data is stored into a

relational database.

Pegasus
dashboard

web interface for monitoring
and debugging workflows

http://pegasus.isi.edu 11Pegasus

command-line…

Provenance data can be
summarized

pegasus-statistics

or used for debugging
pegasus-analyzer

$ pegasus-status pegasus/examples/split/run0001
STAT IN_STATE JOB
Run 00:39 split-0 (/home/pegasus/examples/split/run0001)
Idle 00:03 ��split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
14 0 0 1 0 2 0 11.8 Running *split-0.dag

$ pegasus-statistics –s all pegasus/examples/split/run0001
--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 5 0 0 5 0 5
Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 2 mins, 6 secs
Workflow cumulative job wall time : 38 secs
Cumulative job wall time as seen from submit side : 42 secs
Workflow cumulative job badput wall time :
Cumulative job badput wall time as seen from submit side :

$ pegasus-analyzer pegasus/examples/split/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

Total jobs : 7 (100.00%)
jobs succeeded : 7 (100.00%)
jobs failed : 0 (0.00%)
jobs unsubmitted : 0 (0.00%)

>_

Pegasus http://pegasus.isi.edu 12

Hands-on Demo…

Hands On Demo
• Weak Lensing Pipeline

• https://github.com/pegasus-isi/pegasus-
wlpipe

• An example of a typical gravitational
weak lensing analysis. It uses publicly
available Science Verification catalogs of
the Dark Energy Survey (DES-SV).
• The pipeline is run currently at Fermi

Grid
• We will run the example version at a

cluster at ISI
• Science Codes are bundled into a

Singularity Container
• This is an interactive session. Please

interrupt at anytime to ask questions.
Pegasus http://pegasus.isi.edu 13

https://github.com/pegasus-isi/pegasus-wlpipe

Outline

Pegasus http://pegasus.isi.edu 14

• Submit a workflow
• Go through the dashboard
• Go over the DAX generator and

catalogs
• Show debugging options

• pegasus-analyzer
• Recover from failed workflow

• pegasus-statistics

Pegasus http://pegasus.isi.edu 15

So, what information does Pegasus need?

Site Catalog
describes the sites

where the workflow
jobs are to be executed

Transformation Catalog
describes all of the executables
(called “transformations”) used
by the workflow

Replica Catalog
describes all of the
input data stored on
external servers

Distributed Execution

Pegasus http://pegasus.isi.edu 16

Pegasus https://pegasus.isi.edu 17

Submit Machine
Personal HTCondor

Local Campus Cluster accessible via
Submit Machine *

HTCondor via Glite

BOSCO + SSH**
Each node in executable workflow
submitted via SSH connection to
remote cluster

BOSCO based Glideins**
SSH based submission of Glideins

PyGlidein
ICE Cube Glidein service

OSG using glideinWMS

CREAMCE
Uses CondorG

Globus GRAM
Uses CondorG

** Both Glite and BOSCO build on HTCondor BLAHP
Support.
Supported schedulers

PBS SGE SLURM MOAB

Job Submissions

Pegasus http://pegasus.isi.edu 18

Some of the successful stories…

60,000 compute tasks
Input Data: 5000 files (10GB total)

Output Data: 60,000 files (60GB total)

executed on LIGO Data Grid,
Open Science Grid and XSEDE

Pegasus https://pegasus.isi.edu 20

Advanced LIGO
PyCBC Workflow
One of the main pipelines to measure the statistical
significance of data needed for discovery

Contains 100’s of thousands of jobs and accesses on order of
terabytes of data
Uses data from multiple detectors
For the detection, the pipeline was executed on Syracuse and
Albert Einstein Institute Hannover

A single run of the binary black hole + binary neutron star
search through the O1 data (about 3 calendar months of data
with 50% duty cycle) requires a workflow with 194,364 jobs
Generating the final O1 results with all the review required for
the first discovery took about 20 million core hours

20PyCBC Papers: An improved pipeline to search for gravitational waves from compact binary coalescence. Samantha Usman, Duncan Brown et al.
The PyCBC search for gravitational waves from compact binary coalescence, Samantha Usman et al (https://arxiv.org/abs/1508.02357)

PyCBC Detection GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. B. P. Abbott et al.

https://arxiv.org/abs/1508.02357

Pegasus http://pegasus.isi.edu 21

Soybean Workflow
TACC Wrangler as Execution
Environment

Flash Based Shared Storage

Switched to glideins (pilot jobs) - Brings in
remote compute nodes and joins them to the HTCondor
pool on the submit host - Workflow runs at a finer
granularity

Works well on Wrangler due to more cores and memory
per node (48 cores, 128 GB RAM)

Pegasus
Automate, recover, and debug scientific computations.

Get Started

Pegasus Website
http://pegasus.isi.edu

Users Mailing List
pegasus-users@isi.edu

Support

pegasus-support@isi.edu

Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours/

Bi-monthly basis on second Friday of
the month, where we address user
questions and also apprise the
community of new developments

Pegasus

We
’re

Hir
ing

!https://pegasus.isi.edu/jobs

Workflow Management System

