Accelerating Function Minimisation with PyTorch

Bojan Nikolic

ADASS 2018, College Park, MD

arXiv:1805.07439
Acknowledgement

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).
Introduction
Objective: accelerate a common data analysis step

“Faster” to good science

ACCELERATING FUNCTION MINIMISATION WITH PYTORCH

13 November 2018
Objective: accelerate a common data analysis step

"Faster" to good science AND Simple enough not to be a distraction for a PhD Student
Function minimisation

Find:

$$\arg\min_{\vec{x} \in \mathbb{R}^n} f(\vec{x})$$

$f(\vec{x})$ single valued function

Example algorithms: Nelder-Mead downhill simplex, gradient descent, Broyden Fletcher Goldfarb Shanno (BFGS), MCMC etc. Function gradient often used

Graphics: wikipedia
Function minimisation

Find:

\[
\text{argmin}_{\tilde{x} \in \mathbb{R}^n} f(\tilde{x})
\]

Example algorithms: Nelder-Mead downhill simplex, gradient descent, Broyden Fletcher Goldfarb Shanno (BFGS), MCMC etc. Function gradient often used.

Maximum Likelihood
Maximum A-Posteriori
System Design Optimisation
Observing strategy
Optimisation

Graphics: wikipedia
Calculate:

\[f(x) \text{ and } \nabla f(x) = \frac{\partial f}{\partial x_i} \]

quickly & easily

- Best results for \(f(x) \) that takes lots of data, uses arrays and has few iterations
- Will say nothing about the minimisation algorithms themselves!
- Useful for function minimisation/maximisation but presumably in other areas too
Results
Performance comparison

Wallclock time to solution for maximum Zernike order 7

1 Year ➔ 1 Day
5 Minutes ➔ 1 Second

Wallclock time to solution for 2048 × 2048 grid size

Data Set size (~^2)

Parameter Set size (~^2)
NumPy vs PyTorch code comparison

NumPy:

```python
def gauss(x0, y0,
    amp,
    sigma, rho, diff,
    a):
    dx=a[...0]-x0
    dy= a[...1]-y0
    r=numpy.hypot(dx, dy)
    R2= (r**2 +
        rho*(dx*dy)+
        diff*(dx**2-dy**2))
    E=numpy.exp(-1.0/
                (2*sigma**2)*R2)
    return amp*E
```

PyTorch:

```python
import torch as T
def hypot(x, y):
    return T.sqrt(x**2 + y**2)

def gauss(x0, y0,
    amp,
    sigma, rho, diff,
    a):
    dx=a[...0]-x0
    dy= a[...1]-y0
    r=hypot(dx, dy)
    R2=(r**2 +
        00(rho*(dx*dy))+
        00(diff*(dx**2-dy**2)))
    E=T.exp(-1.0/(2*sigma**2)*R2)
    return 00(amp*E)
```
NumPy vs PyTorch code comparison

A PhD student has been inoculated...
And is still able to do science!
What?
These are effectively the measured PSFs of the telescope

-3mm defocus

In-focus

+3mm defocus
Likelihood function

TRADITIONAL

\[P(y|\hat{y}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y-\hat{y})^2}{2\sigma^2}} \]

Likelihood for a set of observations

\[P(\{y_i\}) = \prod_i P(y_i|\hat{y}_i) \]

Log-likelihood is equivalent to least-squares problem

Not efficient to reduce likelihood to a single valued function!

“ROBUST”

E.g. Cauchy distribution:

\[P(y|\hat{y}) = \frac{1}{\pi\gamma} \frac{\gamma^2}{(y-\hat{y})^2 + \gamma^2} \]

Captures the possibility of outliers (glitches in read-out, short term pointing instability in telescope, atmospheric disturbance)

Log-likelihood does not factor into least-squares
Likelihood function

TRADITIONAL

\[P(y|\hat{y}) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{\frac{(y-\hat{y})^2}{2\sigma^2}} \]

Likelihood for a set of observations

\[P(\{y_i\}) = \prod_i P(y_i|\hat{y}_i) \]

Log-likelihood is equivalent to **least-squares** problem

Not efficient to reduce likelihood to a single valued function!

“ROBUST”

E.g. Cauchy distribution:

\[P(y|\hat{y}) = \frac{1}{\pi\gamma} \frac{\gamma^2}{(y-\hat{y})^2 + \gamma^2} \]

Captures the possibility of outliers (glitches in read-out, short term pointing instability in telescope, atmospheric disturbance)

Log-likelihood **does not** factor into least-squares
Why PyTorch?
Machine Learning as Function Minimisation

\[D_{\text{train}} : \{(X_i, \hat{Y}_i)\}, \text{the training data set} \]

\[M(X; \Theta) \rightarrow Y : \text{Predictor} \]

\(X \): An observation (e.g., pixelated image)

\(Y \): Prediction/classification/etc

\(\Theta \): Predictor parameters (to be learned) – e.g., weights, biases of a neural network

\[\mathcal{L}(\Theta; M, D_{\text{train}}) = \sum_i L \left(\hat{Y}_i - M(X; \Theta) \right) : \text{The total “loss” function} \]

\(L \): individual loss function, could be \(L_1, L_2 \) or something more tailored

“Learning” is (approximately) minimising \(\mathcal{L} \) with respect to \(\Theta \)
PyTorch

Installation:

conda install pytorch cuda91 --c pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Automatic differentiation
Trivially easy to offload to GPUs:
NumPy Contributions

Plot on GitHub of contribution frequency over lifetime of the project

NumPy is the main workhorse of numerical data analysis in Python. It is evolution of a library starting in 1996 (numeric, numarrays, etc)
PyTorch Contributions

Plot on GitHub of contribution frequency over lifetime of the project

Jan 22, 2012 – Jun 11, 2018

Contributions to master, excluding merge commits

Sustained, intense contribution

Not usually seen in community-led sw
How?
What can ML software offer?

- Acceleration
- NUMA
- Non-Uniform Interconnect
- Distributed Memory Cluster Scaling
- High Input Data Throughput
- High Quality Programming Interfaces
- Automatic Differentiation
- Task Segmentation
- Working Memory Management
- Efficient large scale minimisers
- +++
What can ML software offer -- example

<table>
<thead>
<tr>
<th>Acceleration</th>
<th>NUMA</th>
<th>Non-Uniform Interconnect</th>
<th>Distributed Memory Cluster Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Input Data Throughput</td>
<td>High Quality Programming Interfaces</td>
<td>Automatic Differentiation</td>
<td>Task Segmentation</td>
</tr>
<tr>
<td>Working Memory Management</td>
<td>Efficient large scale minimisers</td>
<td>+++</td>
<td></td>
</tr>
</tbody>
</table>
One Floating Point Unit needs around 20k transistors
Complete FP Co-proc 45k transistors

Intel Xeon Broadwell E5 V4 – 7 billion transistors
GPU Acceleration

- Multi-core
 - MIMD(MAMT)

- Short-vector SIMD
 - SIMD(SAST)

- GPU
 - SI(MDSA)MT

From very nice slide deck by Sylvain Collange (2011)
Automatic Differentiation

\[h = H(x) \quad f = F(G(H(x))) \]
\[g = G(h) \quad h_0 = H(x_0) \]
\[f = F(g) \quad g_0 = G(h_0) \]

Symbolic Differentiation

\[\left. \frac{df}{dx} \right|_{x_0} = \left(\frac{dF}{dg} \frac{dG}{dh} \frac{dH}{dx} \right) \bigg|_{x_0} \]

Automatic differentiation

\[\left. \frac{df}{dx} \right|_{x_0} = \frac{dF}{dg} \bigg|_{g_0} \frac{dG}{dh} \bigg|_{h_0} \frac{dH}{dx} \bigg|_{x_0} \]
Reverse-Mode Automatic Differentiation

\[h = H(x, y) \]
\[g = G(x, y) \]
\[f = F(h, g) \]

\[\frac{\partial f}{\partial x}_{x_0, y_0} = \frac{\partial F}{\partial h}_{h_0, g_0} \frac{\partial h}{\partial x}_{x_0, y_0} + \frac{\partial F}{\partial g}_{h_0, g_0} \frac{\partial g}{\partial x}_{x_0, y_0} \]

\[\frac{\partial f}{\partial y}_{x_0, y_0} = \frac{\partial F}{\partial h}_{h_0, g_0} \frac{\partial h}{\partial y}_{x_0, y_0} + \frac{\partial F}{\partial g}_{h_0, g_0} \frac{\partial g}{\partial y}_{x_0, y_0} \]

Standard Chain Rule
Reverse-Mode Automatic Differentiation

\[h = H(x, y) \]

\[g = G(x, y) \]

\[f = F(h, g) \]

\[
\frac{\partial f}{\partial x}\bigg|_{x_0,y_0} = \frac{\partial F}{\partial h}\bigg|_{h_0,g_0} \frac{\partial h}{\partial x}\bigg|_{x_0,y_0} + \frac{\partial F}{\partial g}\bigg|_{h_0,g_0} \frac{\partial g}{\partial x}\bigg|_{x_0,y_0}
\]

\[
\frac{\partial f}{\partial y}\bigg|_{x_0,y_0} = \frac{\partial F}{\partial h}\bigg|_{h_0,g_0} \frac{\partial h}{\partial y}\bigg|_{x_0,y_0} + \frac{\partial F}{\partial g}\bigg|_{h_0,g_0} \frac{\partial g}{\partial y}\bigg|_{x_0,y_0}
\]

Huge efficiency gain by re-using these (scalar) values
Why reverse?

\[h = H(x, y) \]
\[g = G(x, y) \]
\[f = F(h, g) \]

\[
\frac{\partial f}{\partial x}\bigg|_{x_0,y_0} = \frac{\partial h}{\partial x}\bigg|_{x_0,y_0} \frac{\partial F}{\partial h}\bigg|_{h_0,g_0} + \frac{\partial g}{\partial x}\bigg|_{x_0,y_0} \frac{\partial F}{\partial g}\bigg|_{h_0,g_0}
\]

\[
\frac{\partial f}{\partial y}\bigg|_{x_0,y_0} = \frac{\partial h}{\partial y}\bigg|_{x_0,y_0} \frac{\partial F}{\partial h}\bigg|_{h_0,g_0} + \frac{\partial g}{\partial y}\bigg|_{x_0,y_0} \frac{\partial F}{\partial g}\bigg|_{h_0,g_0}
\]

Standard Chain Rule

Need to evaluate gradient in reverse order compared to program flow
Summary

- >100x performance improvement in minimising functions
- Small, contained, software effort needed
 - Perfect integration with standard Python environment
- Out-of-box support for GPUs and multi-threaded CPUs
- Easy to use (& install!)