

Accelerating Function Minimisation with PyTorch

Bojan Nikolic ADASS 2018, College Park, MD

arXiv:1805.07439

Acknowledgement

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Introduction

Objective: accelerate a common data analysis step

Objective: accelerate a common data analysis step

Function minimisation

Find:

argmin
$$f(\vec{x})$$
 $f(\vec{x})$ single valued function $\vec{x} \in R^n$

Example algorithms: Nelder-Mead downhill simplex, gradient descent, Broyden Fletcher Goldfarb Shanno (BFGS), MCMC etc. Function gradient often used

Function minimisation

Find:

Example algorithms: Nelder-Mead downh Goldfarb Shanno (BFGS), MCMC etc. Fun

$f(\vec{x})$ single valued function

mplex, gradient descent, Broyden Fletcher gradient often used

Maximum Likelihood Maximum A-Posteriori System Design Optimisation Observing strategy Optimisation

Graphics: wikipedia

Calculate: $f(\mathbf{x})$ and $\nabla f(\mathbf{x}) = \frac{\partial f}{\partial x_i}$ quickly & easily

- Best results for f(x) that takes lots of data, uses arrays and has few iterations
- Will say nothing about the minimisation algorithms themselves!
- Useful for function minimisation/maximisation but presumably in other areas too

Results

Performance comparison

Performance comparison

NumPy vs PyTorch code comparison

PyTorch:

NumPy:

NumPy vs PyTorch code comparison

What?

OOF Holography – a technique to measuring telescopes

These are effectively the measured PSFs of the telescope

+3mm defocus

Likelihood function

TRADITIONAL

$$P(y|\hat{y}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y-\hat{y})^2}{2\sigma^2}}$$

Likelihood for a set of observations

 $P(\{y_i\}) = \prod_i P(y_i|\hat{y}_i)$

Log-likelihood is equivalent to **least-squares** problem

<u>Not efficient</u> to reduce likelihood to a single valued function!

"ROBUST"

E.g. Cauchy distribution:

$$P(y|\hat{y}) = \frac{1}{\pi\gamma} \frac{\gamma^2}{(y-\hat{y})^2 + \gamma^2}$$

Captures the possibility of outliers (glitches in read-out, short term pointing instability in telescope, atmospheric disturbance)

Log-likelihood **does not** factor into least-squares

Likelihood function

TRADITIONAL

$$P(y|\hat{y}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y-\hat{y})^2}{2\sigma^2}}$$

Likelihood for a set of observations

 $P(\{y_i\}) = \prod_i P(y_i|\hat{y}_i)$

Log-likelihood is equivalent to **least-squares** problem

<u>Not efficient</u> to reduce likelihood to a single valued function!

"ROBUST"

E.g. Cauchy distribution:

$$P(y|\hat{y}) = \frac{1}{\pi\gamma} \frac{\gamma^2}{(y-\hat{y})^2 + \gamma^2}$$

captures the possibility of outliers (glitches in read-out, short term pointing instability in telescope, atmospheric disturbance)

Log-likelihood **does not** factor into leastsquares

Why PyTorch?

Machine Learning as Function Minimisation

 $\mathcal{D}_{\text{train}} : \{(X_i, \widehat{Y}_i)\}$, the training data set

 $M(X; \Theta) \rightarrow Y$: Predictor

- X : An observation (e.g., pixelated image)
- *Y* : Prediction/classification/etc
- Θ : Predictor parameters (to be learned) e.g., weights, biases of a neural network

$$\mathcal{L}(\Theta; M, \mathcal{D}_{\text{train}}) = \sum_{i} L\left(\widehat{Y}_{i} - M(X; \Theta)\right)$$
: The total "loss" function

L: individual loss function, could be L_1, L_2 or something more tailored

"Learning" is (approximately) minimising ${\cal L}$ with respect to $~\Theta$

Ore PyTorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration

Installation:

conda install pytorch cuda91 -c pytorch

Automatic differentiation Trivially easy to offload to GPUs:

NumPy Contributions

Plot on GitHub of contribution frequency over lifetime of the project

NumPy is the main workhorse of numerical data analysis in Python. It is evolution of a library starting in 1996 (numeric, numarrays, etc)

PyTorch Contributions

Plot on GitHub of contribution frequency over lifetime of the project

Contributions to master, excluding merge commits

Not usually seen in community-led sw

How?

What can ML software offer?

What can ML software offer -- example

Why (what is) acceleration ?

Intel 8087 (Wikipedia, by Rautakorbi)

One Floating Point Unit needs around 20k transistors

Complete FP Co-proc 45k transistors

Intel Xeon Broadwell E5 V4 – 7 billion transistors

GPU Acceleration

- Multi-core
 - MIMD(MAMT)

- Short-vector SIMD
 SIMD(SAST)
- GPU
 SI(MDSA)MT

From very nice slide deck by Sylvain Collange (2011)

27 June 2018

Automatic Differentiation

$$h = H(x) \qquad f = F(G(H(x)))$$
$$g = G(h) \qquad h_0 = H(x_0)$$
$$f = F(g) \qquad g_0 = G(h_0)$$

•
$$\left. \frac{df}{dx} \right|_{x_0} = \left(\frac{dF}{dg} \frac{dG}{dh} \frac{dH}{dx} \right) \right|_{x_0}$$

$$\xrightarrow{x} H \xrightarrow{h} G \xrightarrow{g} F \xrightarrow{f}$$

Automatic differentiation

•
$$\left. \frac{df}{dx} \right|_{x_0} = \left. \frac{dF}{dg} \right|_{g_0} \left. \frac{dG}{dh} \right|_{h_0} \left. \frac{dH}{dx} \right|_{x_0}$$

Reverse-Mode Automatic Differentiation

$$h = H(x, y)$$
$$g = G(x, y)$$
$$f = F(h, g)$$

Reverse-Mode Automatic Differentiation

Why reverse?

$$h = H(x, y)$$
$$g = G(x, y)$$
$$f = F(h, g)$$

Need to evaluate gradient in reverse order compared to program flow

Summary

>100x performance improvement in minimising functions

Small, contained, software effort needed

• Perfect integration with standard Python environment

Out-of-box support for GPUs and multi-threaded CPUs

Easy to use (& install!)

More details: arXiv:1805.07439

