
AXS: Making end-user petascale
analyses possible, scalable, and
usable

Petar Zečević - University of Zagreb, Faculty of Electrical Engineering and
Computing; Dirac Institute, Visiting Fellow

Colin T. Slater - University of Washington, Dirac Institute

Mario Jurić - University of Washington, Dirac Institute

Sven Lončarić - University of Zagreb, Faculty of Electrical Engineering and
Computing

Outline

• Problem description

• About Apache Spark

• AXS implementation details

• AXS performance testing results

• Future plans

2

Problem description

• Astronomical data is... well, astronomical
– exponential growth

– e.g. LSST is expected to produce about 80 PB of data

• The current subset-download-analyze paradigm may
be too cumbersome for the next generation of
datasets
– SQL queries online

– Download FITS files

– process with custom Python programs

3

Problem description

We want a tool that:

• is scalable (can handle large datasets)

• is easy to use for a domain scientist

• is efficient (fast querying and cross-matching)

• natively handles time-series

• provides a simple and extendable interface for
running analysis algorithms

4

Problem description

We want a tool that:

• Is built on industry-standard tools
– industry is already dealing with the problems of this scale

– automatically benefits from new developments in the industry

– easier to maintain (easier to find expertise)

5

AXS

Astronomy eXtensions for Spark

AXS and Apache Spark

Based on Apache Spark because:

• Efficient in handling big, distributed data sets

• Easily scalable

• Resilient to individual worker failures

• Already provides Python interfaces

• Various connectors to third-party systems and
databases

• Very large community (industry and academic)

• Actively developed

7

AXS in a nutshell

AXS = Spark extensions + Python library

• Minimally extends Spark with only two extensions to
make cross-matching and processing fast:
– Specific data partitioning scheme

– Sort-merge join optimization

• Spark already provides a significant fraction of
functionality needed

• AXS adds additional methods to make astronomers'
lives easier

• Time-series aware

8

AXS - Python API examples

from axs import AxsCatalog, Constants

spark = SparkSession.getOrCreate()

db = AxsCatalog(spark)

sdss = db.load("sdss")

gaia = db.load("gaia")

gaia_sdss = gaia.

crossmatch(sdss, 2*Constants.ONE_ASEC).

select("ra", "dec", "psfMag_r", "mag_r").

where("abs(psfMag_r - mag_r) > 1").

count()

9

Load the catalog data

Do the crossmatch

Initialize Spark

Do further filtering
and processing

AXS - performance tests

10

Gaia DR2 - 1.7 billion objects (425GB compressed)
SDSS - 710 million objects (66GB compressed)

(one machine, 512GB RAM, 48 CPUs, fast disks)

25 seconds

136 seconds

AXS - performance tests

11

Gaia DR2 - 1.7 billion objects (425GB compressed)
ZTF - 2.9 billion objects (1.2TB compressed)

(one machine, 512GB RAM, 48 CPUs, fast disks)

41 seconds

330 seconds

AXS - API examples

Other AxsFrame methods:
region (ra1, dec1, ra2, dec2)

cone (ra, dec, r)

histogram (condition, num_bins)

histogram2d (cond1, cond2, num_bins1, num_bins2)

add_primitive_column (colname, coltype, func, *in_col_names)

add_column (colname, coltype, func, *in_col_names)

Ligh-curve handling:
array_allpositions (column, value)

array_select (column, indexes)

12

AXS inside - Data partitioning

• Based on the zones algorithm (Gray, Nieto-
Santisteban, Szalay 2007), adapted for a distributed
architecture

• Partitions the sky into horizontal strips (1 arc-min
high, by default)
– zone = (Dec+90) / NUM_ZONES

– gives 10800 zones

• Physically stored into buckets - Parquet files
– bucket = zone % NUM_BUCKETS

– 500 buckets, which gives 21 zones per bucket, on avg, by default

• Data inside buckets sorted by zone and ra columns

13

AXS inside - Distributed x-matching

• Spark's sort-merge join with our epsilon-join
implementation (Silva et al. 2010)

• Spark not able to optimize this query:
select * from gaia, sdss where gaia.zone = sdss.zone

AND gaia.ra BETWEEN (sdss.ra + DELTA, sdss.ra - DELTA)

AND distance(gaia.ra, gaia.dec, sdss.ra, sdss.dec) < DELTA;

• Epsilon-join uses a moving window
– slides over right table's rows (sdss) as the left row changes (gaia)

– reduces the number of rows considered

– only one pass through the data is needed

– uses minimal amount of memory

14

AXS - what's next?

• Currently using it to work with ZTF data (2.9 billion
rows)
– enable science!

• Performance testing and optimization

• Paper in preparation (submitting very soon)

• Making AXS widely available (Github, Conda, cloud,
documentation & tutorials) and collecting initial
feedback
– make ZTF DR1 available on a cloud resource, ready for analysis

15

If you are interested in taking AXS for a spin,
please contact us:

petar.zecevic@fer.hr mjuric@uw.edu,
ctslater@uw.edu sven.loncaric@fer.hr

Thank you!

