



### NoSQL Databases An efficient way to store and query heterogeneous astronomical data in DACE















- Data and Analysis Center for Exoplanets.
- (observations and synthetic populations).
- **3D** visualisation (come to the demo booth !)







## DACE

#### https://dace.unige.ch

• Facility to store, exchange and analyse data related to exoplanets

• Web front end and python API to query the database (in dev).







# The Requirements

- instruments.



· Store heterogeneous observational data produced by different

• Regularly adapt the data model (we are at the end of the chain). Store synthetic population simulations data points (~500M / Pop). • Ensure high availability (load balancing) and persistence (replications).





- Fully distributed database developed by Apache.
- High availability (no Master-Slave). Every node is equivalent.
- a replication factor.
- Consistency level can be controlled for each query.





## CASSANDRA

• Column oriented storage => can have thousand columns in a table. Asynchronous and automatic replication across the nodes based on





more than 2 of the 3 following requirements:

- Consistency: Every read receives the most recent value, or an error. • Availability: Every read or write request receives a non-error reply. • Partition tolerance: The system continues to work properly if
- there are some missing nodes.

be managed with the "consistency level" in each query.



# **CAP (Brewer) Theorem**

This is impossible for a distributed database to simultaneously provide

=> Cassandra is considered as an AP database. But consistency can







# CASSANDRA (Storage)

#### Row Oriented (SQL)

| ID | Paraml | Param2 | Param3 |
|----|--------|--------|--------|
|    | $\vee$ | v 21   | NULL   |
| 2  | v 12   | NULL   | NULL   |
| 3  | v   3  | NULL   | v 33   |
| 4  | v 14   | v 24   | NULL   |



#### Column Oriented

| ID | Paraml |
|----|--------|
|    | $\vee$ |
| 2  | v 12   |
| 3  | v   3  |
| 4  | v 14   |

| $\square$ | Param2 |
|-----------|--------|
|           | v 21   |
| 4         | v 24   |

|   | Param3 |
|---|--------|
| 3 | v 33   |







# CASSANDRA (Storage)

#### Row Oriented (SQL)

| ID | Paraml | Param2 | Param3 | Param4 |
|----|--------|--------|--------|--------|
| I  | $\vee$ | v 21   | NULL   | NULL   |
| 2  | v 12   | NULL   | NULL   | NULL   |
| 3  | v   3  | NULL   | v 33   | NULL   |
| 4  | v 14   | v 24   | NULL   | NULL   |
| 5  | v 15   | NULL   | v 35   | v 45   |

Nicolas Buchschacher - University of Geneva - ADASS 2018



#### Column Oriented

| ID | Paraml |
|----|--------|
|    | $\vee$ |
| 2  | v 12   |
| 3  | v   3  |
| 4  | v 14   |
| 5  | v 51   |

| $\supset$ | Param2 | I |
|-----------|--------|---|
|           | v 21   |   |
| 4         | v 24   |   |

| $\mathbf{)}$ | Param3 |  |
|--------------|--------|--|
| 3            | v 33   |  |
| -            | v 35   |  |









# **CASSANDRA** Partitions & Replication

R

| ID | Paraml | Param2 | Param3 | Param4 |
|----|--------|--------|--------|--------|
| I. | $\vee$ | v 21   | NULL   | v 4 I  |
| 2  | v 12   | NULL   | NULL   | NULL   |
| 3  | v  3   | NULL   | v 33   | v 43   |
| 4  | v 14   | v 24   | NULL   | v 44   |

Nicolas Buchschacher - University of Geneva - ADASS 2018

R

Rep.



### DC | (rep = 2)

R

R







| ID | Paraml | Param2 | Param3 | Param4 |
|----|--------|--------|--------|--------|
| I. | $\vee$ | v 21   | NULL   | v 4 I  |
| 2  | v 12   | NULL   | NULL   | NULL   |
| 3  | v  3   | NULL   | v 33   | v 43   |
| 4  | v 14   | v 24   | NULL   | v 44   |













13

Nicolas Buchschacher - University of Geneva - ADASS 2018



## **CASSANDRA** Partitions & Replication

DC 3 (rep = 2)







## CASSANDRA Pros & Cons

- + Store a lot of heterogenous columns without performance impact. + Fully distributed (no Master-Slave): all nodes are equivalent. + Easily scalable by adding new nodes.

- + Open source, compatible with major operating systems. + Easily expandable to the PB scale (Apple ex: 75'000 nodes).
- No relation between tables => No JOIN operations. - Not transactional (not important in our case). - Poor set of search and filter operations.







![](_page_11_Picture_1.jpeg)

- Open source enterprise search platform.
- Apache Lucene.
- SolrCloud is the distributed version of Solr.

+

**DSE** combine both in a single software ... but it's not free !!!

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_10.jpeg)

# Solr / SolrCloud

• Powerful indexer (full-text search, spatial, filtering, sort ...) based on

• REST API with a lot of supported formats (JSON, CSV, Python,...).

![](_page_11_Picture_14.jpeg)

![](_page_12_Picture_0.jpeg)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département d'astronomie

# SQL vs NoSQL comparisons

#### SQL

Fixed schema, avoid column / table manipulations

Vertical scalability. Increase CPU, RAM and disks

JOIN operations

Transactional operations

Centralised approach. Load balance using Master-Slave

Long history and experience (1970) New generation (~2000)

Nicolas Buchschacher - University of Geneva - ADASS 2018

![](_page_12_Picture_11.jpeg)

#### NoSQL Flexible schema, easily add new columns / parameters Horizontal scalability (add nodes) No JOIN, no subqueries Not transactional De-centralised approach. Naturally load balanced

![](_page_12_Picture_13.jpeg)

![](_page_13_Picture_0.jpeg)

## Conclusion

- Is NoSQL better ? No !!! It's different ...
- and want a flexible data model.
- NoSQL is Big Data oriented.
- requirement.
- Are VO standards ready for NoSQL ?

![](_page_13_Picture_9.jpeg)

# Consider NoSQL databases if you need to store heterogeneous data

#### Consider NoSQL databases if availability and scalability is a strong

# • SQL is still on the stage and very powerful (we still use Postgres)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_4.jpeg)

# Thank you

![](_page_14_Picture_6.jpeg)