An HDF5 Schema for SKA Scale Image Cube Visualization

Angus Comrie, Adrianna Pińska, Rob Simmonds and Russ Taylor

Interactive Data Visualization

- Image cubes getting very large
 - MeerKAT: 16K x 16K per channel
 - SKA Phase 1: Up to 64K x 64K
 - ALMA: Lots of channels
- Remote DataViz (Cloud server, Web/Desktop client)
- "Interactive" speeds
 - Quick access to data
 - Accelerate commonly used workloads
- IDIA: Explore new approaches for implementation in new viewers

Hierarchical Data Format (HDF) 5

- Filesystem-in-a-file
- Easy to structure data product and derivatives
- Purpose-built schemas
- Existing FITS replacements:
 - LOFAR (Anderson et al. 2010)
 - HDFITS (Price et al. 2015)

Common Workloads

- Widely used: XY spatial, Z spectral
- "W" sometimes Stokes
- X contiguous on storage
- Different axes, different I/O (sequential / random)

Slices (2D subset)

- Plane-aligned (XY, YZ, XZ)
- Very common: XY slice (fixed Z)
- Animate through channels

Profiles (1D subset)

- Common: Axis-aligned
- X, Y, Z profiles for given pixel
- Polarization: Stokes as well
- Z Axis: 1 single pixel read / channel

Regions (3D subset)

- Common: Small XY subset
- Z profiles for subset
- Still a lot of random reads!

Histograms (Slice or Cube)

- Used to define color map bounds
- Can be used to approximate percentiles
- Global / Local bounding

Dynamic resolution

- Deliver appropriate image sizes to client
- Increase resolution as user zooms in
- Requires reading slices and downsampling
- Tiled rendering

Schema Features

- FITS round-trip compatibility
- Permuted Datasets (XYZ -> ZYX)
 - Z-profile and region acceleration (Z is sequential)
 - Helps with YZ slices too
- Mip-mapped Datasets
 - Down-sampling in powers of 2
 - Helps with tiled delivery
- Slice and cube histograms
 - Very small data product

Schema Features

https://github.com/idia-astro/hdf5converters/wiki/HDF5-Image-Sche ma

Performance

_

Workload	Original [ms]	Permuted [ms]	Speedup
YZ-slice	5033 ± 7	2.08 ± 0.05	2420 ± 50
Z-profile	52 9 ± 0 1	0.182 ± 0.002	291 + 4
$32 \times 32 \times 376$ region	340.1 ± 1.0	5.27 ± 0.002	64.5 ± 0.5
$64 \times 64 \times 376$ region	604.4 ± 1.7	13.1 ± 0.1	46.0 ± 0.5
$128 \times 128 \times 376$ region	876.8 ± 2.9	54.4 ± 0.7	16.1 ± 0.2

(Tests performed on 5840 x 1074 x 376 image, fast SSD)

Conclusion

- Schema helps define structure for derived data
- Accelerates common workloads significantly
- Enables efficient and scalable exploration of image

cubes

Additional: Region example

(a) $3 \times 8 = 24$ reads of 3 pixels each

(b) 3 reads of 24 pixels each

Additional: Online resources

- Converter and schema details: <u>https://github.com/idia-astro/hdf5converters</u>
- Benchmark: <u>https://github.com/veggiesaurus/adass_hdf5_benchmark</u>