
Towards new solutions for scientific computing: the case of Julia

Maurizio Tomasi Mosè Giordano

2018/11/15

Who are we?

Maurizio Tomasi (myself) Mosè Giordano

▶ Worked on the Planck mission (calibration,
simulations, data analysis…)

▶ Currently involved in other CMB experiments

▶ Worked on gravitational microlensing
▶ Author of several Julia packages

(github.com/giordano)

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/giordano

Making Python more performant

Python is a fantastic language: easy and with a very rich library. (And AstroPy is awesome!)

However, its speed is not impressive at all!

In [1]: %time x = [i*i for i in range(100_000_000)]
CPU times: user 5.27 s, sys: 860 ms, total: 6.13 s
Wall time: 6.18 s

Several solutions have been developed: NumPy, PyPy, Numba, Cython… They can be extremely
performant in their own domains, but picking the right one requires careful consideration.

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://www.pypy.org/
https://numba.pydata.org/
https://cython.org/

The two-language problem

In order to make Python codes more performant, it is common to link them to C/C++/Fortran, using
tools like f2py, SWIG, Cython, and so on:

Main program

1st module

2nd module

3rd module

These codes are complex to implement and deploy:

▶ Need to master many languages
▶ Try to write a portable setup.py for projects using f2py!

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Meet Julia

▶ Relatively new language (first official release was 0.2, in Nov 2013)
▶ Julia 1.0 released on August, 9th 2018
▶ Released under the MIT license
▶ julialang.org

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://julialang.org

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

A taste of Julia (1/5)

One-liner definition of a function
f(x) = 3x + 1

Floating-point
@time f(0.1) # 0.005716 seconds (15.63 k allocations: 872.499 KiB)
@time f(0.3) # 0.000002 seconds (5 allocations: 176 bytes)

Integer
@time f(2) # 0.002888 seconds (2.00 k allocations: 117.656 KiB)
@time f(10) # 0.000001 seconds (4 allocations: 160 bytes)

Rational
@time f(3//2) # 0.070596 seconds (209.83 k allocations: 10.785 MiB)
@time f(4//9) # 0.000005 seconds (6 allocations: 224 bytes)

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

A taste of Julia (2/5)

Load default packages
using Printf
using Pkg

Install a few new packages from Internet
for name in ["Cosmology", "Measurements", "Zygote#master", "PyCall"]

Pkg.add(name)
end

using Cosmology
c = cosmology(h=0.69, Neff=3.04, OmegaM=0.29, Tcmb=2.7255)
z = 0.1

@printf("Universe age at z=%.1f: %.1f Gyr\n", z, age_gyr(c, z))
Prints "Universe age at z=0.1: 12.5 Gyr"
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

A taste of Julia (3/5)

using Measurements # Define the ± binary operator

z = 0.1 ± 0.01
println(z)
Prints "0.1 ± 0.01"

age = age_gyr(c, z)
println(age)
Prints "12.465336269441773 ± 0.12305608850870296"

@printf("%.2f ± %.2f Gyr\n", age.val, age.err)
prints "12.47 ± 0.12 Gyr"

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

A taste of Julia (4/5)

See https://arxiv.org/abs/1810.07951
using Zygote # Long time to compile…

g(x) = 2x + 1
println(g(1)) # Print 3
println(g'(1)) # Print 2 (derivative of g at x=1)
@code_llvm g'(1) # Surprise! "ret i64 2"

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

A taste of Julia (5/5)

using PyCall

@pyimport numpy.random as nr
x = nr.randn(5)

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

JuliaAstro on GitHub

Package Description

AstroImages.jl Visualization of astronomical images (by MG)
AstroLib.jl Astronomical and astrophysical routines (by MG)
AstroTime.jl Astronomical time keeping
Cosmology.jl Library of cosmological functions
DustExtinction.jl Models for the interstellar extinction due to dust
ERFA.jl Wrapper to liberfa
EarthOrientation.jl Earth orientation parameters from IERS tables
FITSIO.jl Flexible Image Transport System (FITS) file support
LombScargle.jl Compute Lomb-Scargle periodogram (by MG)
SPICE.jl Julia wrapper for NASA NAIF’s SPICE toolkit
SkyCoords.jl Support for astronomical coordinate systems
UnitfulAstro.jl An extension of Unitful.jl for astronomers
WCS.jl Astronomical World Coordinate Systems library

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/JuliaAstro/AstroImages.jl
https://github.com/JuliaAstro/AstroLib.jl
https://github.com/JuliaAstro/AstroTime.jl
https://github.com/JuliaAstro/Cosmology.jl
https://github.com/JuliaAstro/DustExtinction.jl
https://github.com/JuliaAstro/ERFA.jl
https://github.com/JuliaAstro/EarthOrientation.jl
https://github.com/JuliaAstro/FITSIO.jl
https://github.com/JuliaAstro/LombScargle.jl
https://github.com/JuliaAstro/SPICE.jl
https://github.com/JuliaAstro/SkyCoords.jl
https://github.com/JuliaAstro/UnitfulAstro.jl
https://github.com/JuliaAstro/WCS.jl

Simulating cosmological experiments with Julia

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Data science with Julia

The good The bad
▶ Very fast execution for codes with lots of

calculations
▶ Powerful features (many numerical types,

metaprogramming, missing values…)
▶ Ability to call C, Fortran, Python, R
▶ Package management is rock solid

(reproducible builds, like Rust’s cargo)
▶ Native support for parallel computing (no GIL

here!)
▶ Profiling tools immediately available (e.g.,

--track-allocation)

▶ Slow execution if every function is called just
once

▶ Not as many packages as other languages
(Python, C++, …)

▶ Plotting is promising (PyPlot.jl, Plots.jl,
UnicodePlots.jl, Makie.jl, …), but still lacking

▶ Avoid global variables as the plague! They
make the compiler highly inefficient

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://docs.julialang.org/en/v1/manual/complex-and-rational-numbers/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/missing/
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaInterop/RCall.jl
https://docs.julialang.org/en/v1/stdlib/Pkg/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/manual/profile/
https://github.com/JuliaPy/PyPlot.jl
https://github.com/JuliaPlots/Plots.jl
https://github.com/Evizero/UnicodePlots.jl
https://github.com/JuliaPlots/Makie.jl

When to use Julia

Julia is interesting if:

▶ You are going to implement a code that will do lots of calculations and is going to spend much
time in doing it, and you will write this code from scratch.

▶ You have an existing large, monolithic code and want to turn it into something to be used
interactively, without sacrificing speed.

▶ You plan to use Julia’s homoiconicity to do something really innovative, like Zygote.jl!

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://arxiv.org/abs/1810.07951

When to use Julia

Julia is interesting if:

▶ You are going to implement a code that will do lots of calculations and is going to spend much
time in doing it, and you will write this code from scratch.

▶ You have an existing large, monolithic code and want to turn it into something to be used
interactively, without sacrificing speed.

▶ You plan to use Julia’s homoiconicity to do something really innovative, like Zygote.jl!

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://arxiv.org/abs/1810.07951

When to use Julia

Julia is interesting if:

▶ You are going to implement a code that will do lots of calculations and is going to spend much
time in doing it, and you will write this code from scratch.

▶ You have an existing large, monolithic code and want to turn it into something to be used
interactively, without sacrificing speed.

▶ You plan to use Julia’s homoiconicity to do something really innovative, like Zygote.jl!

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://arxiv.org/abs/1810.07951

More information

▶ Julia compiler: julialang.org
▶ Julia user’s manual: docs.julialang.org/en/v1
▶ Package list available at juliaobserver.com
▶ User’s and developers’ forums: discourse.julialang.org
▶ Very good blogpost about Numba, Cython, and Julia:

www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia
▶ JuliaAstro: github.com/JuliaAstro

▶ These slides and additional material: bitbucket.org/Maurizio_Tomasi/adass2018-julia
▶ For questions, feel free to ask me or write me an email: maurizio.tomasi@unimi.it

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

http://julialang.org/
https://docs.julialang.org/en/v1/
https://juliaobserver.com/
https://discourse.julialang.org/
http://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/
https://github.com/JuliaAstro
https://bitbucket.org/Maurizio_Tomasi/adass2018-julia
mailto:maurizio.tomasi@unimi.it

Backup slides

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Calculations with NumPy arrays

Consider this code, where all the parameters for f are NumPy arrays:

def f(r, x1, x2, x3, x4):
r = x1 - x2 + x3 - x4

This code is executed by NumPy as if it were

tmp = x1 - x2
tmp += x3
r = tmp - x4

thus three for loops are ran.

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Performance of NumPy codes

2 3 4 5 6 7 8
Number of terms in the expression

1

2

3

4

5

6

7

8

9

Be
st

 ti
m

e
(1

00
 ru

ns
) [

m
s]

Python 3.6.6 + NumPy 1.15.1

Source codes available at github.com/ziotom78/python-julia-c-.
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/ziotom78/python-julia-c-

Calculations with C++ vectors

In C++, the code needs to be written in this way:

for(size_t i = 0; i < r.size(); ++i) {
r[i] = x1[i] - x2[i] + x3[i] - x4[i];

}

We need to write the for loop explicitly, but there is only **one* of them.

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Performance of NumPy/C++ codes

2 3 4 5 6 7 8
Number of terms in the expression

1

2

3

4

5

6

7

8

9

Be
st

 ti
m

e
(1

00
 ru

ns
) [

m
s]

Python 3.6.6 + NumPy 1.15.1
G++ 7.3.0, flags -O3 -march -msse3

Source codes available at github.com/ziotom78/python-julia-c-.
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/ziotom78/python-julia-c-

Performance of Julia programs

4 terms
f(r, x1, x2, x3, x4) = @. r = x1 - x2 + x3 - x4
g(r, x1, x2, x3, x4) = @. r = x1 - x2 + x3
h(r, x1, x2, x3, x4) = @. r = x1 - x2

Etc.

The @. macro fuses all the operations on loops. Thus, f above is equivalent to

function f(r, x1, x2, x3, x4)
for i in eachindex(r)

r[i] = x1[i] - x2[i] + x3[i] - x4[i]
end

end

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Performance of NumPy, C++, and Julia codes

2 3 4 5 6 7 8
Number of terms in the expression

1

2

3

4

5

6

7

8

9

Be
st

 ti
m

e
(1

00
 ru

ns
) [

m
s]

Python 3.6.6 + NumPy 1.15.1
G++ 7.3.0, flags -O3 -march -msse3
Julia 1.0.2

Source codes available at github.com/ziotom78/python-julia-c-.
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/ziotom78/python-julia-c-

Using SIMD instructions in Julia

C++ was given an unfair advantage, as it was allowed to use SIMD instructions (-msse3). Moreover, it
did not check array boundaries (Julia does automatically).

In Julia, we can use the @inbounds and @simdmacro to make Julia code equivalent to C++:

function f(r, x1, x2, x3, x4)
@inbounds @simd for i in eachindex(r)

r[i] = x1[i] - x2[i] + x3[i] - x4[i]
end

end

Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

Performance of NumPy, C++, and Julia codes

2 3 4 5 6 7 8
Number of terms in the expression

1

2

3

4

5

6

7

8

9

Be
st

 ti
m

e
(1

00
 ru

ns
) [

m
s]

Python 3.6.6 + NumPy 1.15.1
G++ 7.3.0, flags -O3 -march -msse3
Julia 1.0.2

Source codes available at github.com/ziotom78/python-julia-c-.
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/ziotom78/python-julia-c-

Performance of NumPy, C++, and Julia codes

2 3 4 5 6 7 8
Number of terms in the expression

1

2

3

4

5

6

7

8

9

Be
st

 ti
m

e
(1

00
 ru

ns
) [

m
s]

Python 3.6.6 + NumPy 1.15.1
G++ 7.3.0, flags -O3 -march -msse3
Julia 1.0.2
Julia 1.0.2, with @inbounds @simd

Source codes available at github.com/ziotom78/python-julia-c-.
Towards new solutions for scientific computing: the case of Julia (Maurizio Tomasi, Mosè Giordano) ADASS 2018 (2018/11/15)

https://github.com/ziotom78/python-julia-c-

	Backup slides

