
Running the Fermi Science 
Tools on Windows

Thomas E. Stephens (Innovim/GSFC) and the Fermi Science Support Center Team
fermi.gsfc.nasa.gov/ssc

Abstract
The Fermi Science Tools, publicly released software for performing analysis on science data from
the Fermi Gamma-ray Space Telescope, have been available and supported on Linux and Mac
since launch. Running the tools on a Windows based host has always required a virtual machine
running Linux. New technologies, such as Docker and the Windows Subsystem for Linux has
made it possible to use these tools in a more native like environment.

In this poster we look at three different ways to run the Fermi Science Tools on Windows: via a VM,
a Docker container, and using the Windows Subsystem for Linux. We present the steps necessary
to install the tools, any issues or problems that exist, and benchmark the various installations.
While not yet officially supported by the Fermi Science Support Center, these Windows
installations are checked by staff when new releases are made.

Introduction
The Fermi Science Tools, now distributed as the FermiTools (see poster P4.3) are developed collaboratively between
the Fermi instrument teams and the Fermi Science Support Center (FSSC). Development of these tools began before
launch and the tools have been available since the very first public data release in 2009.

For a time, the Fermi Large Area Telescope (LAT) collaboration, maintained a natively compiled version of the tools for
Windows, this version regularly had issues and was never publicly released or supported. It was discontinued, even
for use within the LAT collaboration, in 2014.

While it has always been possible to run the tools on Windows using a virtual machine with a Linux guest operating
system, this is a somewhat “heavy” solution. With the recent development of both Docker and the Windows Subsystem
for Linux, it is possible for more lightweight option that allows Windows use to use the already supported Linux
versions of the FermiTools in a more native fashion.

In this poster we discuss the installation and use of the FermiTools in these three different scenarios, look at some
simple performance benchmarks, and discuss and issues or caveats associated with their use.

In a Virtual Machine
Using a virtual machine to run the tools has been available since launch.
For this study, we used two different VMs both running under Oracle’s
Virtual Box system. One ran the Ubuntu 18.04 OS which is also run in the
Windows Subsystem for Linux test and the other was running Scientific
Linux 7.5, the base OS for the Docker container version of the tools.

Of the three methods a virtual machine installation is the most straight
forward but also the most resource intensive, requiring the most disk
space to hold the virtual machine image. Installation consists of five
steps:
1. Create VM and install the guest OS
2. install a C/C++ compiler
3. install anaconda/miniconda (see poster P4.3)
4. Install the Fermi tools
5. within the FermiTools conda environment, install pyds9 via pip.

At this point the tools are ready to use.

As an optional, although desired step, on can set up a shared directory
between the guest and host operating systems to store the data being
analyzed. While not necessary, if Windows is your primary OS where your
other tools reside, this may be a desirable configuration.

Software Installation
In a Docker Container

Docker provides a lighter-weight alternative to installing a full VM for
running software that has been bundled into an appropriate Docker
container. Since we are running Linux software on a Windows kernel, this
is not as light-weight as it could be and is essentially a transparent way to
run VM without having to set it up manually.

Beginning with the 2018 Fermi Summer School, the FSSC has begun
providing a prebuilt Docker container with the current version of the
FermiTools. Based on Scientific Linux 7, this container is available in the
fssc/fermibottle repository on Docker Hub.

For this installation method, no setup within the container is needed.
Simply run the container and attach to it and the tools are ready to go. The
one additional installation step is to install an Xwindows system on the
Windows host. This is only needed if you intend to use the graphics
capabilities of the tools (e.g. plotting, gui interfaces).

The one caveat with this method is that Docker for Windows, the default
Docker system, is only available for the Professional (and Enterprise)
version of Windows. If you are running Window Home, you have to install
the older Docker Toolkit.

In Windows Subsystem for Linux
While potentially the most seamless and “native” feeling of the installation
options. using the Windows Subsystem for Linux (WSL) requires to most
initial setup. It has an advantage over Docker, however, that it is available
on any Windows OS, not just the Professional versions.

To install and use the FermiTools in a WSL environment requires the
following steps:

1. Activate the WSL feature in your OS

2. Install a Linux distribution from the Windows store (we tested Ubuntu
18.04)

3. Install an XWindows server if desired (as for Docker)

4. Within the Linux environment

a) Install a C/C++ compiler

b) install anaconda/miniconda (see poster P4.3)

c) Install the Fermi tools

d) within the FermiTools conda environment, install pyds9 via pip.

Issues, Pros, and Cons
Virtual Machine

The main advantage of the virtual machine
installation is its familiarity and direct
correspondence to a traditional installation
on a native Linux host. Once the VM is set
up and running, all the tools, instructions,
and help for the FermiTools apply since you
are effectively working in their native
environment. No additional work is
required to use the tools or run an analysis.

The main downside is resource usage.
Compared to the other options, the virtual
machine installation is the “heaviest”. It
requires the most disk space for the virtual
disks and there is a larger overhead for the
virtual machine manager. Anecdotally (I
didn’t make hard measurements but was
constantly monitoring CPU usage), the tests
running in the VM used 3-5% more CPU than
the same test running in Docker or WSL.

While these tests were done using Oracle’s
VirtualBox hypervisor, we expect similar
results from using other hypervisors such
as Hyper-V (used by the Docker container,
or VMWare.

Docker Container
The first time running the tests in the
Docker environment, the Binned Likelihood
test failed due to lack of memory. By
default, Docker gives the virtual machines it
creates a 2GB memory limit. This was not
enough to run the test. In order to analyze
larger datasets with this installation
method, you need to set the memory limit in
Docker to something higher. The
benchmarks presented were run with an
8GB memory limit (the same as used by the
Virtual Machine installations) and had no
issues. Further investigation should be
done to quantify exactly how much memory
is needed for different analysis scenarios.

The main downside to this method is
probably the unfamiliarity with Docker and
running and connecting to Docker images.
Once that hurdle is overcome, this is one of
the easiest methods to use since the
FermiTools are already set up and
configured in the downloaded Docker image
allowing you to start working with them
right away.

WSL
One downside of using the Windows
Subsystem for Linux for the FermiTools is
that it has the most complicated setup of all
the methods examined. However, once set
up, it is by far the easiest to use; all you
have to do is launch the Linux app to get
your command prompt, start the conda
environment and you’re off to the races. It
also provides native integration with the
host file system, something that takes a bit
more work in the other methods.

Another issue discovered while testing this
method is a problem with how WSL handles
the local time zone. While the other two
methods use the standard Linux time zone
information, WSL creates an internal time
zone based on the user’s system clock.
This manifested by some unit test errors
that were off by an hour due to daylight
savings time. This, however, affects at
worst the values of times in the FITS file
headers and does not affect the analysis as
there were no issues with the actual
analysis threads.

Final Thoughts
The use of conda for distribution of the FermiTools greatly eases the problem of
using them for scientific analysis on Windows. Because the binaries are
precompiled and distributed with all of their required dependencies, users do
not have to worry about configuration and compliation.

This new distribution method, combined with technology advances that provide
more and easier ways to run and use Linux software on Windows, now makes
that operating system a viable platform for Fermi scientific analysis without only
a little bit of extra set up.

Of the methods tested, Microsoft’s Windows Subsystem for Linux, while
requiring the most effort to set up and install, provides the fastest processing
while the Docker container requires the least user setup after getting the hosting
environment configured.

Benchmarks
All of the benchmarking tests were run on the same system, a Dell 7250
Workstation laptop with an Intel Xeon E3-1505M v6 CPU (4 Hyper-threaded cores,
3.0 GHz) and 32 GB of RAM.

For testing, we used a set of test scripts that run the FermiTools unit tests and
implement the binned and unbinned likelihood analysis from the Fermi Analysis
Threads (https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/). These tests
both ensure that all the functionality is working and exercise the tools in standard
analysis scenarios.

Figures 1, 2, & 3 (at right) show the timing results for the three different tests on
the four different systems. Each test was run 10 times on each system.

While tests were typically run when the system was not being used for much else,
and only consumed resources on 1 or 2 of the system’s 8 virtual cores, some of
the scatter seen is due to load from other processes on the machine. However,
since this will often be the case when analyses are run with the tools, this is not
really an issue. The narrower box plots for some tests are often due to those
tests running overnight when the system wasn’t being used for anything else.

We notice a few things right away. First the general trend is the same for all three
tests. In fact, with the exception of the AGN analysis with binned likelihood, the
relative ranking of the four systems is the same.

The Scientific Linux VM is the slowest of all the systems. While the cause may be
that the particular VM used was not a fresh install of the OS but had been used
regularly for work, the fact that the Docker container built on the same OS was
the second slowest in 2 of 3 tests seems to indicate an issue with the OS itself.

The Windows Subsystem for Linux installation running Ubuntu 18.04 was by far
and away the fastest of the installations across all the tests, being 10-20% faster
than the SL VM depending on the test. Since the Ubuntu VM was faster than the
SL VM at least some of that speed up is due to the OS but in every test, the WSL
Ubuntu installation out-performed the VM installation by 7-12%. Similarly, the
Docker installation always outperformed the VM installation of Scientific Linux
although not by quite the same margin (only 3-9%).

F

Figure 1 – elapsed time for unit tests on the various systems Figure 1 – elapsed time for Binned Likelihood analysis test 
on the various systems

Figure 2 – elapsed time for Unbinned Likelihood analysis test 
on the various systems


	Slide Number 1

