
Overview
An Association is a list of items that are in some way related. The Association Generator,
through a set of Rules, filters a larger list of items, called a Pool, producing a set of
Associations.

For JWST, the Pool is the list of exposures produced by the observatory. The resulting
associations are groups of exposures which will form higher level data products. The type of
association created determines what type of downstream processing will be performed.

JWST Association Generator
Jonathan Eisenhamer (STScI)

Generator Algorithm (simplified)
Pool

For each
row

Matches any
existing

associations?

Add to matching
associations

Matches any
association

rules?

Create new
associations

Existing
Associations

Orphan Pool

YES

YES

CONTINUE

NO

Workflow

Pool

Rules

Association
Generator

Associations Calibration
Processing

High Level
Products

File Store

API

$ asn_generate pool.csv

The default command to run a pool against the Stage 2 and
Stage 3 JWST rules is:

Command to use a user-specified set of rules:
$ asn_generate pool.csv -r my_rules.py

from jwst.associations.main import Main as asn_generate

result = asn_generate([‘pool.csv’])

result.associations # Associations generated
result.orphaned # Table of rows not placed in any associations

From Python, the full command-line interface is accessed using the Main
class:

The typical full programmatic interface would be as follows:
from jwst.associations import AssociationRegistry, AssociationPool, generate

pool= AssociationPool.read(‘pool.csv’)
rules= AssociationRegistry() # Use the default JWST rules
associations = generate(pool, rules) # Returns the list of associations

Associations
Associations created by the default JWST rules
are simply Python dicts. The associations are
serialized to files using JSON. YAML is also fully
supported. Each association consists of metadata
and a product list. Each product represents a
single calibration process. Each product consists
of a list of input exposure files and a suggested
base name for the output.

An example Stage 3 association is:
{

"asn_type": "coron3",
"asn_rule": "candidate_Asn_Coron",
"version_id": null,
"code_version": "0.12.0a.dev181",
"degraded_status": "No known degraded exposures in association.",
"program": "10005",
"asn_id": "c1007",
"target": "t001",
"asn_pool": "jw10005_20181020T033546_pool",
"products": [

{
"name": "jw10005-c1007_t001_nircam_f430m-maskrnd-sub320a430r",
"members": [

{
"expname": "jw10005009001_02102_00001_nrcalong_calints.fits",
"exptype": "psf",
"exposerr": "null",
"asn_candidate": "('c1007', 'coronagraphy')"

},
{

"expname": "jw10005006001_02102_00001_nrcalong_calints.fits",
"exptype": "science",
"exposerr": "null",
"asn_candidate": "('c1007', 'coronagraphy')"

}
]

}
]

}

Rules
Rules are Python classes that define both the
association structure and what members from the
Pool will constitute an association.

JWST rules fall into two groups: Stage 2 and Stage
3 associations, and are used as input to the
corresponding State 2 and Stage 3 calibration
pipelines .

A example Stage 3 rule is:
@RegistryMarker.rule
class Asn_SpectralSource(AsnMixin_Spectrum):

"""Slit-like, multi-object spectrographic modes"""

def __init__(self, *args, **kwargs):

Setup for checking.
self.constraints = Constraint([

Constraint(
[Constraint_TSO()],
reduce=Constraint.notany

),
Constraint_Optical_Path(),
Constraint_Target(),
Constraint(

[
DMSAttrConstraint(

name='exp_type',
sources=['exp_type'],
value=(

'nrc_wfss'
'|nrs_autoflat'
'|nrs_autowave'
'|nrs_fixedslit'

),
force_unique=False

),
Constraint_MSA()

],
reduce=Constraint.any

)
])

Check and continue initialization.
super(Asn_SpectralSource, self).__init__(*args, **kwargs)

@property
def dms_product_name(self):

return dms_product_name_sources(self)

Pools
Pools are tables containing the attributes of each exposure needed to
assign exposures to associations. Any exposure can be part of zero to
many different associations. Pools can be any format which astropy
tables can read. An example of a partial pool is:

filename obs_num detector filter pupil
--- ------- -------- ------ -----

jw10002001001_01101_00006_nrcb2_uncal.fits 1 nrcb2 f115w clear
jw10002001001_01101_00006_nrcb4_uncal.fits 1 nrcb4 f115w clear
jw10002001001_01101_00006_nrcb1_uncal.fits 1 nrcb1 f115w clear

jw10002001001_01101_00006_nrcblong_uncal.fits 1 nrcblong f444w clear
jw10002001001_01101_00001_nrcb2_uncal.fits 1 nrcb2 f115w clear
jw10002001001_01101_00005_nrcb1_uncal.fits 1 nrcb1 f115w clear

...
jw10002001001_01101_00002_nrcblong_uncal.fits 1 nrcblong f444w clear
jw10002001001_01101_00004_nrcblong_uncal.fits 1 nrcblong f444w clear

jw10002001001_01101_00004_nrcb2_uncal.fits 1 nrcb2 f115w clear
jw10002001001_01101_00005_nrcb4_uncal.fits 1 nrcb4 f115w clear

jw10002001001_01101_00001_nrcblong_uncal.fits 1 nrcblong f444w clear
jw10002001001_01101_00001_nrcb4_uncal.fits 1 nrcb4 f115w clear

jw10002001001_01101_00006_nrcb3_uncal.fits 1 nrcb3 f115w clear

