PlanetS

National Centre of Competence in Research

00 &) DACE: Data and Analysis Cen' X

& C {) #& Universite de Geneve [CH] | https://dace.unige.ch

Exoplanets
‘he Extr:

Encyclopaedia

Formation & evolution

Data & Analysis Center for Exoplanets

o

Observability

Observations

Dynamical evolution Stars Solar system
DACE tools The DACE platform Databases Exoplanet ressources
Observability Tutorials h CDS Systemic

Unit converter What's DACE MAST Exoplanets.org
Chart edition Last updates ExoDat Geneva Planet Search Group

Statistics Publications & Acknowledgements NASA Exoplanet Archive

DACE: Development, tests and deployments of web

w O 0@ :

UNIVERSITE

applications DE GENEVE

J. Burnier, F. Alesina, N. Buchschacher and D. Ségransan

Fabien

— DACE: Data Analysis Center for Exoplanets

The Data and Analysis Center for Exoplanets (DACE) is a web platform based
at the University of Geneva (CH) dedicated to extrasolar planets data
visualisation, exchange and analysis.

This platform is based on web technologies using common programming
languages like HTML and Javascript for the front-end and a Java REST API for
the back-end.

J. Burnier

Over the last 12 months, the process to maintain, develop, test and deploy the
applications has been dramatically improved to facilitate the maintenance and
the integration of new features. The goal of such automation is to let more time
to focus on development and reduce the duplicated work.

To achieve this result, we migrated our Java application to the Maven software
project management. We implemented a pipeline on GitLab which consists of
executing the tests and deploy the application in a dev environment at every

Maven and unit tests

commit. We added Selenium tests to simulate the user and compare the new
commits with the old ones.

Gitlab: continuous integration tool

The first thing to do was to encapsulate existing code to a project
management tool which manage dependencies and simplify compilation,
test and jar/war creation. We chose maven as it remains the reference on
Java. Then we added unit test to existing code where possible. To do this
we followed mvn convention and started using JUnit. Finally, the idea for
backend API for example, was to apply Test Driven Development when
possible.

Dev
— O :

S X Selenium
o Validations

Gitlab Pipeline

Selenium: website test tool

Before going to production, web tests should be done to ensure having no
bugs and no regression (same as unit test but on visual part). To do this
we use selenium. This tool simulates user interaction on a website. To
facilitate selenium test development, we adopted Page Object Pattern.

Example of home page test :

package ch.unige.dace.pages.home;
import ...

/ k%

* Created by julien on 20.10.17.

> <p>

* Test the home page. Use FunctionalTest to setup selenium environment
*/

public class HomePagePolygonsTest extends FunctionalTest {

@Test
public void shouldDisplayHomePage() throws InterruptedException {

Navigator.openDaceWebsite();

HomePagePolygons homePagePolygons = new HomePagePolygons();
assertThat (homePagePolygons.isDisplayed()).isTrue();
List<LocatorAndPage> polygons = homePagePolygons.getPolygons();

for (LocatorAndPage polygon : polygons) {

Page page = Navigator.goToPage(polygon);

if (Navigator.isPageOpenOnNewTab()) {]
Navigator.switchTab();
assertThat(page.isDisplayed()).isTrue();
Navigator.closeTab();

; else {
assertThat(page.isDisplayed()).isTrue();
Navigator.goBack();

SwWISsS NATIONAL SCIENCE FOUNDATION

We needed a tool to do continuous integration. Fortunately, other project inside our
university started to use Gitlab. We migrated our project from svn to git and pushed
the code inside gitlab. After that, a gitlab-runner must be installed where you want to
run your build. And finally, we added a .gitlab-ci file into every project. You can see
below the pipeline we created on DACE

Release

Backend and Frontend deployment

The deployment is also handled by gitlab. It needs to be defined in .gitlab-
ci.yml. On our side, after every commit, we deploy backend and frontend on
dev environment.

Then if everything is ok, the app is released, deployed manually on one
production server and after some manual tests, deployed on the other
production server.

You can see below an example of gitlab-ci.yml to build and deploy on staging

stages:
- build
- staging
- release
— production

Maven Test and Build:

stage: build
script: mvn clean install
Need this config to pass the jar to next stages
artifacts:

paths:|

- target/x.war
expire_in: 1 day

Deploy to Staging:
stage: staging
environment:
name: Staging
script:
— export WEBAPP_FULL_NAME=$(basename target/x.war)
cp target/$WEBAPP_FULL_NAME /opt/tomcat/dace-webapps
In =fsn will do the following : —-f overrides 1if symlink already exists. -n will not follow previous symlink.
—-S : standard option to have a symlink and not a hard link
export WEBAPP_NAME=$(echo $WEBAPP_FULL_NAME | sed 's/-.x//"')
export WEBAPP_NAME="${WEBAPP_NAME}.war"
ln —fsn /opt/tomcat/dace-webapps/$WEBAPP_FULL_NAME /opt/tomcat/webapps/$WEBAPP_NAME

[e

https://dace.unige.ch

The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation

https://dace.unige.ch
https://dace.unige.ch

