

An Overview of the LSST Pipelines

Jim Bosch, Princeton/LSST - ADASS 2018

Detailed Look at Some of An Overview of the LSST Pipelines

Jim Bosch, Princeton/LSST - ADASS 2018

Making a Catalog

Let's start with a simple operation: we want to make a catalog containing measurements of the sources detected in a single image.

The LSST Pipeline splits this into three steps.

Detection

- Smooth image by the PSF.
- Find above-threshold regions.
- Find peaks within them.
- Grow regions by PSF width.

Not heuristic: this is maximum likelihood for isolated point sources.

And it's *usually* fine for extended and slightly-blended sources.

Deblending

We want to measure all of these, even #2.

Two(-ish) choices:

- Fit models to all sources iteratively or simultaneously.
- Construct a counterfactual image that isolates each source, and measure them individually.

Deblending

We want to measure all of these, even #2.

Two(-ish) choices:

- Fit models to all sources iteratively or simultaneously.
- Construct a counterfactual image that isolates each source, and measure them individually.

id	parent	deblend_nChild
1	0	0
2	0	3
3	2	0
4	2	0
5	2	0

id	parent	deblend_nChild
1	0	0
2	0	3
3	2	0
4	2	0
5	2	0

id	parent	deblend_nChild
1	0	0
2	0	3
3	2	0
4	2	0
5	2	0

id	parent	deblend_nChild
1	0	0
2	0	3
3	2	0
4	2	0
5	2	0

id	parent	deblend_nChild
1	0	0
2	0	3
3	2	0
4	2	0
5	2	0

Measurement

- Replace all Footprints with noise.
- For each source:
 - Insert HeavyFootprint.
 - Run centroid algorithms.
 - Run shape algorithms.
 - Run flux and other algorithms.
 - Re-replace with noise.
- Re-insert all HeavyFootprints.

Catalog Complete!

That was easy.

Catalog Complete!

Too easy.

Starting from Zero

All the flat/bias/dark/fringe correction you know and love, plus:

- a Collimated Beam Projector
- an Auxiliary Telescope
- forward modeling of the atmosphere

and more!

Background Modeling

- Mask out detections and artifacts.
- Spatially bin pixel values (sigma-clipped mean).
- Either interpolate (splines)
 or approximate
 (polynomials) to smooth.

Bin or approximate on the largest *continuous* scale possible

Background Modeling

- Mask out detections and artifacts.
- Spatially bin pixel values (sigma-clipped mean).
- Either interpolate (splines)
 or approximate
 (polynomials) to smooth.

Bin or approximate on the largest *continuous* scale possible

PSF Modeling

557

- Select securely-classified, isolated stars from source measurements.
- Fit a spatially varying model to them.

Could fit over the full focal plane if the model could handle changes in focus between chips.

Starting from Zero, Again

It's a Puzzle!

DetrendedImage

Background

PSF

DetectionMask

ArtifactMask

Footprints

HeavyFootprints

SourceCatalog

Zooming Out

all of the previous slides just describe the Bootstrap step!

Zooming Out, Again

...and even the previous slide is just this bit.

Zooming Out, Again

Remember these?

Data Releases vs. Prompt Processing

Data Release

Data Releases vs. Prompt Processing

Prompt

For More Information

ISST

- Check out LSST's Data Products
 Definition Document at
 http://ls.st/dpdd for more information
 about the pipelines and particularly
 the data products they'll produce.
- LSST pipeline code is already being used to process data from Subaru's Hyper Suprime-Cam (right); see the HSC Pipeline Paper (Bosch et al 2018) to learn more about the algorithms and how they're working today.

LSST Users!

Internet!

- LSST is also providing a data access system and analysis environment, which we're calling the LSST Science Platform.
- Learn more at http://ls.st/lse-319

Got More Questions? Want Swag?

- Visit the LSST booth
- Get a demo
- Pick up some cool items!

Coaddition and Image Differencing

Coadd Processing

Multi-Epoch Object Characterization

One More Step

Once we've got good measurements built with the best PSF and background, we can match and calibrate to a reference catalog.

