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ABACKGROUND

PART ONE




RADIO FREQUENCY INTERFERENCE

= Man-made interference

Global positioning system (GPS),
mobile phones, aircraft
navigation communications and
artificial noise sources and etc.

= Natural interference

Lightning noise, solar reflection
and etc.




PROBLEMS

With the significant improvement of resolution and sensitivity of radio telescopes, they
become more and more sensitive to the interference noise, and the influence of the
Interference on the observation results is intensified.

= Loss of data and reduction of data quality

= Influence of searching for objects such as pulsar fast
radio bursts and radio transient sources




“TIANLAI"" PLAN

A radio telescope-array, aims to
observe the large-scale structure of
the universe, that is to explore the
distribution of matter in space.

http://tianlai.bao.ac.cn/index.html



http://tianlai.bao.ac.cn/index.html

TASK

= The rule of RFI is difficult to figure out.

= The telescope array of “Tianlal plan” produces terabytes of data, which
challenges the traditional data processing methods.

v

How to detect RFI in massive observing radio data automatically and
efficiently?
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CONVOLUTIONAL NEURAL NETWORK,CNN

Deeper layers extract concrete features, shallower layers extract abstract features.

LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics is :
similar ot different locations ./ Learn multiple filters.

CONVOLUTIONAL NET

Example: 1000x1000 image
IM hidden units

Filter size: 10x10 E.g.: 1000x1000 image

100M parameters 100 Filters
Filter size: 10x10
10K parameters
Renza Ran




AUTO-ENCODER

Through self expression, the
feature of the data Is extracted
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APROPOSED METHOD

PART Two




Time

UNET

= We trained a UNET on Tianlail data.
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UNET

= UNET was firstly originated How about regarding the RFI
and proposed for medical detection task as an edge
Image processing. detection task? Many edges

» in the image!
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UNET

= A UNET that we designed and achieved .
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SOME DETAILS OF UNET

= Loss function: log loss function
1 N M
L(Y,P(YIX)) = —log P(Y|X) = _EZ yijlog(pi;)

=1

1 j=1
Y Is output variable

X 1s input variable

N is the number of input samples

M is the number of classes

P IS the possibility of xi belonging to class




SOME DETAILS OF UNET

= To prevent over fitting: dropout layer

No-Drop Network No-Drop Network

= The left figure doesn’t contains a dropout layer. The right figure contains the dropout
layer after the fully connected layer, which randomly suppress some nodes to stop
working by setting their outputs as value 0.

= a(.) Is an active function.

®




ADVANTAGES OF UNET

= It can calculate each pixel’s possibility of being a RFI signal.
--we set a threshold of 0.5

If the possibility value >0.5 true

If the possibility value <0.5 false

= It can learn the distribution of RFI better.

--With its improved symmetrical structure, it combines the features of
corresponding layers(from shallower to deeper layers) during the up-
sampling process.




ADVANTAGES OF UNET

= It can learn more spatial information, the relationship between different
baselines.

= It can automatically and efficiently detect RFI in massive radio data.




AEXPERIMENT

PART Three
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DATA |

Tianlai datal Time points Frequency points Baseline number
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original 3340 100 18528
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EXPERIMENT RESULT
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Tianlai data | Precision rate Recall rate F-1score
False 0.97 0.98 0.98
True 0.87 0.77 0.83
Avg/Total 0.96 0.96 0.96
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DATA I

Tianlai datall Time points Frequency points Baseline number
number number

original 1650 576 18528

After preprocessing 1536 512 18528
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EXPER| I\/”:NT RESU T For Tianlai data I, 30- IayerUNET
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ACONCLUSION

PART Four




CONCLUSION

We used a improved method based on UNET to automatically and efficiently
detect RFI in massive radio data.

= First, we preprocess the data to suit the network,

= Secondly, We train the improved with Adam(Adaptive Moment Estimation) to
optimize the loss function on GTX1080ti.

= Finally, we detect RFI signals with the trained U-Net and obtain results with

RFI flagging. We firstly use the U-Net on “Tianlal” data and obtain satisfying
results.
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