
ADASS XXVIII - College Park, MD

Daniele Tavagnacco - INAF-Observatory of Trieste
on behalf of EUCLID SDC-IT

Performance-related aspects in
the Big Data Astronomy Era:

architects in software optimization

ADASS XXVIII - College Park, MD

Design and Optimization

image credits: web

ADASS XXVIII - College Park, MD

EUCLID mission

● ESA medium class space mission

● Universe expansion, dark energy, dark matter, gravity

● launch 2022

● 15,000 deg2 survey, 6 years

● 2 instruments: VISible imager, Near Infrared SPectrograph

● ~109 observed sources, ~106 sources with spectrum

● >15 PB data

● lookback ~10 billion years (z~2)

image credits: ESA

ADASS XXVIII - College Park, MD

Design and Big Data
EUCLID : 15 PB of data to be processed reduced

 technical only technical + human: understandable

Big Data: datasets difficult to process in acceptable time frame or cost range

1- Computing power 2- Design/optimize algorithms
a) powerful machines
b) parallelize computations

ADASS XXVIII - College Park, MD

SDC-IT level3 activities
Euclid computing infrastructure:

● 3 levels: level1 (collect), level2 (prepare), level3 (science)

● distributed infrastructure (--> rules)

○ common environment for sw

○ minimize effort in production and testing
(common development tools, test tools, …)

SDC-IT supervise level3 Galaxy Clustering software:

● integration in EC framework
(C++, Python, 3rd party sw like swarp, sextractor, h5py…)

● software porting in C++ or Python

● support for refactoring and optimization

● deployment in CI environment

ADASS XXVIII - College Park, MD

Two Point Correlation Function GC example

EC: LE3_GC_2PCF_SDD, 2017EC: technical budget note, 2015

rmax=200 fixed

rmax=200 fixed

Before…
on Euclid estimated
size of ~107 objects

...after
measured on
simulated
catalogs

~22h

~48GB
~500GB

2x104h

ADASS XXVIII - College Park, MD

Software design
Activity performed before writing any line of code

Aimed at reducing:

● rigidity - any change affects many parts of the system

● fragility - change breaks unexpected parts of the system

● immobility - code hard to reuse because it cannot be disentangled

Based on:

● Single Responsibility - each entity has only one responsibility

● Open/Close - entities open for extension, closed for modifications

● Liskov’s Substitution - Open/Close applied to behaviour

● Interface Segregation - avoid general purpose interfaces

● Dependency Inversion - decoupling high-level /low-level modules with interfaces

ADASS XXVIII - College Park, MD

Scientific software: how good is design?
Software is a collection modules that:

● operate in harmony

● have simple APIs

● hide complexity internally

Requirements change during lifetime:

● extend functionalities

● maintain reliability when extending

● reuse parts of the code

The quantity of data to be reduced is increasing:

● code scalability

● how many data are “big data”

ADASS XXVIII - College Park, MD

Optimization within Euclid GC

Compiler result

Optimized code

Scientific software:
● has special life cycle

● mainly developed by scientists

● No a priori requirements

Refactoring the code:
● more understandable

● cleaner and tidier

● removing redundacies and unused code

● generalize to allow reuse

● change internal structure
(smooth flow, avoid nested conditions)

● improve performance

ADASS XXVIII - College Park, MD

Optimization within Euclid GC

Optimized code

Compiler result

Scientific software:
● has peculiar life cycle

● mainly developed by scientists

● No a priori requirements

Refactoring the code:
● more understandable

● cleaner and tidier

● removing redundacies and unused code

● generalize to allow reuse

● change internal structure
(smooth flow, avoid nested conditions)

● improve performance (know the tool)

ADASS XXVIII - College Park, MD

Optimization within Euclid GC
Scientific software:

● has special life cycle

● mainly developed by scientists

● No a priori requirements

Refactoring the code:
● more understandable

● cleaner and tidier

● removing redundacies and unused code

● generalize to allow reuse

● change internal structure
(smooth flow, avoid nested conditions)

● improve performance (know the tool)

Python!

ADASS XXVIII - College Park, MD

Need to become a code expert?

Compiled code

Optimized code by compiler

1reg

2reg

Source code

ADASS XXVIII - College Park, MD

What a compiler does?

...to machine code

Software architect
can make difference here

Lexical analysis Syntax analysis Semantic analysis

Intermediate code
generationCode optimizationCode generation

token
stream

parse
tree

intermediate
code

intermediate
code

token
stream

From source...

ADASS XXVIII - College Park, MD

Maintaining the code

Revisit the code adopting new features provided by language evolution

code compiled

optimized C++11

optimized C++14

ADASS XXVIII - College Park, MD

The role of human (scientist) architect

Design code properly (scalability, maintenance, extension,...)

Consider performance when designing code and picking algorithms

Adopt optimized features provided by language evolution

Know the tool: C++ is not Fortran, Python is not IDL

When optimize don’t rely only on “tips&tricks”

If you use C++, trust the compiler, it contains 45 years of improvements…

ADASS XXVIII - College Park, MD

Q&A

http://xkcd.com/974

