
An introduction to
FITSWebQL

C. Zapart, Y. Shirasaki, M. Ohishi, Y. Mizumoto, W. Kawasaki, T. Kobayashi,
G. Kosugi, E. Morita, A. Yoshino (NAOJ), S. Eguchi (Fukuoka Univ.)

FITS Web Quick Look
•preview over 100GB large files in a web browser 
(no FITS file download)

•exponential growth in ALMA FITS file sizes

•high-resolution data cubes (10,000x10,000 pixels images, 4,000
frequency channels)

•FITS cut-out: download only a region of interest

140GB✔

FITS Web Quick Look

•the original JVO ALMA WebQL service demo at ADASS 2012

•ALMA WebQL v2 demo at ADASS 2016

•2017: FITS WebQL v3 (3D view)

•2018: FITS WebQL v4 (re-written in Rust, real-time streaming
videos of FITS data cubes)

standalone desktop edition:
https://github.com/jvo203/fits_web_ql

FITS WebQL DEMO

technical architecture
client

a web browser

server
the Rust language
(HTTP, WebSockets)

duplex, real-time

WebSocket API

HTML5
JavaScript
SVG (d3.js)

WebGL (three.js)
WebAssembly (native
speed video decoding)

Intel SPMD Program
Compiler (efficient SIMD)

libyuv
(image scaling)

libvpx
(Google VP9 video

codec)

x265
(real-time HEVC video

encoding)

why Rust?

• no crashes

• no memory leaks

• fearless concurrency

Rust is a systems programming language that runs
blazingly fast, prevents segmentation faults, and guarantees

thread safety.

in a 24-hour continuous operation:

moz://a

beware of a steep learning curve

Rust: pros and cons
Rust is a systems programming language that runs

blazingly fast, prevents segmentation faults, and guarantees
thread safety.

•speed on par with C/C++, faster than Java, no garbage collection
freezes

•compiler detects thread data races, a small runtime keeps an eye
on array bounds

•C/C++: smooth compilation, headaches during execution

•Rust: frustration/headaches at compilation, plain sailing at runtime

WebAssembly (Wasm)
Compile and run high-level languages like C/C++/Rust in a

web browser at native speed

a web browser

mouse movement

C code compiled
to WebAssembly:

decode YUV brightness
apply colourmap

write RGBA pixels onto
HTML5 Canvas

server

Kalman Filter:
predict the future
mouse movement

x265 called from Rust:
encode a video frame

request
a video frame

binary
WebSocket

rinse and repeat
near real-time

supported by all major browsers

VP9 vs. HEVC
Google’s VP9 (libvpx)

FITS cube images (a still keyframe)
HEVC (x265)

real-time video encoding

libvpx library: both an encoder and decoder
x265 library: only an encoder

(search the Internet for a decoder to suit your
task)

slower, less efficient encoding, inferior
multithreading

faster than libvpx, more efficient (bandwidth-
friendly), scales across all CPU cores

no greyscale (an overhead of handling
redundant RGB/YUV channels)

YUV 4:0:0 support (server-encode as greyscale,
add colour in the client)

an easy API, trivial to compile the decoder into
WebAssembly

extreme difficulty finding a suitable JavaScript
decoder (DIY: FFmpeg C API compiled to

WebAssembly)

from Europe
250ms 0～50kbps 2fps

from Victoria
125ms

from Virginia
150ms 250kbs 5fps

cloud hosting?

from Vietnam
100ms 100kbps 5fps

cloud hosting?

how do you copy
over 100TB of data?

how do you keep it
in sync in

a timely fashion?

get on a plane with
a suitcase full of
hard disks and

fly around the world?

cloud hosting?

host servers in ALMA
Regional Centres?

256GB RAM
dual CPU socket
(32 threads)

2xPCI Express
NVME SSDs in

RAID0

SATA III SSDs

NFS HDD RAID

thank you Rust
•superior stability, improved performance

•better memory management

Google “JVO Portal”:
https://jvo.nao.ac.jp/portal/top-page.do

Google “fitswebql”:
https://github.com/jvo203/fits_web_ql

https://jvo.nao.ac.jp/portal/top-page.do

