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Figure 15. Estimated merger rates versus cosmic time and red-
shift, showing that observations and theory agree that the inci-
dence of galaxy mergers decreases rapidly with time. The Illustris
RF-based merger rates are about of factor of 2 larger than inferred
from pair statistics, possibly indicating a di↵erence in morphology
distribution between simulation and data.

tures to train RF classifications. An alternative approach
would use an auto-encoding technique, such as convolutional
neural networks, to determine the image features important
for selecting mergers (e.g., Huertas-Company et al. 2018). In
truth, it is likely important to consider both types of inves-
tigations: manually encoded features enable us to exploit a
long history of intuition of the associated morphology statis-
tics, while auto-encoding techniques may teach us about the
rarer, subtler signatures of the merger process.

6 SUMMARY

We created synthetic HST and JWST images from the Il-
lustris cosmological simulation, from which we measured
common morphological diagnostics. By combining those di-
agnostics with knowledge of the intrinsic merger events,
we constructed training sets at various epochs (z =

0.5, 1, 1.5, 2, 2.5, 3, 4). We used these samples as inputs to
ensemble learning techniques, specifically random forests,
to create optimized multidimensional merger classification
schemes. We then applied these schemes to existing measure-
ments from the CANDELS Multi-Cycle Treasury program
with HST. We find the following:

(i) The RFs achieve superior classification results com-
pared with just one- or two-dimensional classifications based
on the input morphology statistics such as A, G, M20. Cross-
validation shows the RFs yield ⇡ 70% completeness, roughly
twice that achieved with one- or two- dimensions, with sim-
ilar sample purity.

(ii) The RFs successfully utilize morphological signatures
of mergers occurring throughout the wide time range consid-
ered by our training set, 500 Myr. Features associated with
strong central concentrations or bulges are most important
for selecting past mergers (past 250 Myr), while double nu-
clei and asymmetries are most important for selecting future
mergers (next 250 Myr).

(iii) When applied to observed surveys, the RFs produce
estimated merger rates that rise rapidly from z = 0.5 to at
least z = 3, confirming complementary probes and agreeing
well with theoretical expectations of merger rate evolution.

(iv) The magnitude of the merger rate estimated by the
RFs is about twice that implied by theory and other obser-
vations, suggesting a possible mismatch in the morphology
distribution between Illustris and real data.
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Figure 9. Distribution of merger event times relative to each
mock observation, for each source classified as a False Positive or
False Negative in our default RF for z = 1.5. Top: Histogram of
the time of next and last major or minor mergers considered in
the RF. Bottom: For the same sources, the time distribution of
the next and last major mergers only. False positives have a large
contribution from both major and minor mergers occuring within
a few Gyr of the observation (but outside the 0.5 Gyr window),
as well as seemingly non-merger-related processes such as clumpy
star formation. False negatives are dominated by minor mergers.

whole redshift range. This would allow one to define a single
RF classification for galaxies at all epochs, and could yield
benefits from the increased size of the training set. However,
we found that the individually trained RFs, which can vary
arbitrarily with redshift, performed better than the com-
bined RF. We hypothesize that this result owes to strong
evolution in important parameters of the merger identifica-
tion process, such as angular size evolution, noise, morpho-
logical change, or evolution of the merger rate. Thus it is
important to define flexible classification schemes that can
evolve at least as fast as these observational and physical
e↵ects.

4.1 Redshift Evolution of Classification
Performance

In Figure 12, we show how the RF performance changes
as a function of redshift, using the metrics defined in Sec-

Figure 10. Same as Figure 9 but for True Positive and True
Negative sets.

Figure 11. Relative feature importances for RF classifications
trained on sets of mergers completing within the past 250 Myr
plotted versus mergers completing within the next 250 Myr, i.e.
the past and future subsets of the full default RF training sets
used in the rest of this paper. Signatures of a bulge contribute
to selecting recent mergers, while signatures of asymmetry and
multiple nuclei contribute to selecting mergers completing soon.
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Results
‣Apply trained RFs to CANDELS 

‣RFs pick bulges in post-
mergers, asymmetries in pre-
mergers 

‣ Find rising merger rate, similar 
to Snyder+17 pair timescales 

‣ Estimate 2X too many mergers 

‣ Possibly from imperfect 
morphology distro. via 
feedback physics 

‣May require Transfer Learning 
& better sims to improve
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Mergers identified in Illustris Simulation: 
‣ 10:1 mass ratio (Rodriguez-Gomez+15) 
‣ final merger in +/- 250 Myr 5

Figure 2. Eight example sources in our mock image training sample at z = 1.5, demonstrating the variety of systems and merger states
manifest in Illustris. For each source, the left panel shows the time-evolution of the stellar mass of the main progenitor, with red circles
indicating major (filled) and minor (open) mergers as defined in Section 2.5. For clarity, we consider only the last and next mergers in
each category. If such a merger occurs within the gray shaded region of ±250 Myr, we label the source as a merger event (Section 2.5)
for the purpose of investigating classifier performance. We also show three-color composite images of each source rendered from mock
JWST NIRCAM F115W, F150W, and F200W images.

galaxies: a merger completes within a 0.5 Gyr window cen-
tered on the time of observation (|tmerge� tobs| 6 0.25 Gyr).
We have explored several other definitions, such as shorter
and longer windows, as well as a 1.0 Gyr window centered
at tobs + 0.25 Gyr, all of which achieve similar performance
and limitations in the classification tests of Section 3, and
so we omit them from this paper for clarity and brevity.

A unique aspect of our definition is the relatively broad
set of objects used to label the intrinsic merger sample, by
using a relatively wide time window (500 Myr) and includ-
ing mergers with mass ratios up to 10. One reason for this
was that we required a large enough training set to carry
out the calculations in Section 3. However, a benefit of this
choice is that we might be able to identify merger signa-

tures more subtle or long-lived than the ones conventionally
used. For example, Lotz et al. (2008) showed that classical
image-based merger definitions have observability times of
only 100-200 Myr. Therefore the broader definition we have
chosen could have important consequences for the relative
performance of di↵erent merger indicators.

Regardless of which mergers we choose as our intrinsic
sample, there will always be situations that make it more or
less di�cult for us to identify them accurately. As Figure 2
shows, it is possible for an image to appear very much like
an ongoing merger (for example, a close pair or multiple nu-
clei) even though a merger event completes outside of these
two selections and therefore that object would not be con-
sidered a merger in this work. This false positive mode is
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See Also
Illustris Synthetic Deep Fields 
https://archive.stsci.edu/prepds/illustris/

JWST/CEERS Mocks (Coming Soon) 
High-Res Mocks (w/ Marc Postman, Jason Tumlinson)

1. We mock-observed Illustris in popular HST & JWST 
filters, and measured common non-parametric 
morphology statistics (Lotz+04, Freeman+13). 

2. Using this manual encoding, we trained 10-d random 
forests on simulated mergers with a broad definition of 
10:1 mass ratio within +/- 250 Myr. 

3. The RFs achieve superior completeness by leveraging 
different features in pre-mergers versus post-mergers.  

4. We recover the expected rise in merger rates versus z, 
matching earlier merger stages (pairs). 

5. IllustrisTNG public on 12/7/2018, and CNN studies in 
progress, stay tuned!

Validation
‣We trained 10-d random forests (RFs) 

using five morphology statistics from each 
of I and H mock images. 

‣RFs beat individual morphology stats 

‣All manual encoding methods we tried had 
poor purity (30-50%) in Illustris. 

‣Sims might be saying this is harder than we 
thought—motivates auto-encoding methods 
e.g. Deep Learning
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8 Automated Merger Classification Using Illustris

Figure 3. Illustris morphology diagrams at z = 1.5 for ⇡ 4000 sources (⇡ 600 mergers), color-coded by merger fraction (left), proportion
of all mergers (center), and our random forest-classified merger fraction (right). The simplest morphological merger classifications select
the upper left of the G-M20 panel and right side of the C-A, regions which do contain a high fraction of mergers (left). However, most
mergers do not have these unusual morphologies and therefore occupy the same region of parameter space as average non-merging
galaxies (center). Therefore, to select superior merger samples, we seek to define new classification techniques (e.g., right) that better
trace the distribution of mergers in this space. This is seen as the lighter shades of the right column spanning more of parameter space,
capturing more mergers that do not occupy the standard regions used to classify mergers.

In addition, we label each source with a binary True or
False value according to the intrinsic merger definitions of
Section 2.5.

3.2 Definitions and Cross Validation

We use cross-validation to tune and verify the parameters of
the RF algorithms. For every RF, we select a random subset
of 2/3 of the simulated sources as inputs to construct the
forest, and we test the resulting forest classifications against
the untrained 1/3 of sources. We use the test-set results
when quoting classification performance.

The output of the RFs is an ensemble of estimates of
the probability that a given point in feature space has a
given input label. In our case this output is the probability
that the source is a true merger according to Section 2.5. For
each point in the training set and test set, we compute the
mean probability from the set of trees in the RF. However,
this probability does not refer to a true statistical estimate,
but it is instead a variable that could have arbitrary scale
depending on the properties of feature space and input data.
Therefore, we must choose a method for mapping between
these probability values and a classification outcome in order
to assess its performance.

Initially, we explore the space of classification outcomes
as a continuous function of the variable values or output
probability values. For any chosen threshold value P , we
assess the performance of the RF classifier using standard
definitions. We will also use existing common merger def-

initions in feature space to make comparable assessments.
At a given snapshot, let the number of sources be N , the
number of mergers be Nm, so the number of nonmergers is
N � Nm. These labels are according to the intrinsic defini-
tion of Section 2.5. We define the following measures of a
classification:

• TP : The number of true positives, i.e. the number of
true mergers selected by the classification. TP 6 Nm.

• FP : The number of false positives, i.e. the number of
non-mergers selected by the classification. FP 6 N � Nm.

• TN : The number of true negatives, i.e. the number of
non-mergers rejected by the classification. TN 6 N � Nm.

• FN : The number of false negatives, i.e. the number of
true mergers rejected by the classification. FN 6 Nm.

With these definitions, the total number of objects se-
lected by a classification is the sum of all objects selected,
i.e. TP+FP . The total number of objects rejected by a clas-
sification is TN+FN . The number of true intrinsic mergers
is Nm = TP +FN , and the number of intrinsic non-mergers
is N � Nm = FP + TN . These quantities define the “con-
fusion matrix” of a binary classification. We then assess the
classifications using several common metrics:

• True Positive Rate = TPR = TP/Nm = TP/(TP +
FN). This quantity is sometimes called the Completeness,
Recall, or Sensitivity.

• False Positive Rate = FPR = FP/(N � Nm). This
quantitiy is also called the Fall Out rate.

• Positive Predictive Value = PPV = TP/(TP + FP ).

c� 0000 RAS, MNRAS 000, 000–000

Dataset & Features 
‣ 106 mock HST & JWST images, mainly z > 1 
‣ Common non-parametric morphology stats 
‣ illustris-project.org/data
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