
imp

Development of auto-multithresh: an automated masking
algorithm for deconvolution in CASA
Takahiro Tsutsumi, Amanda Kepley, IlsangYoon, Urvashi Rau (NRAO)

The National Radio Astronomy Observatory is a facility of the National Science Foundation
operated under cooperative agreement by Associated Universities, Inc.

A general purpose automated masking algorithm for deconvolution
was developed in order to support automated data processing in
ever-increasing data volumes of the current and future radio
interferometers as described by Kepley et al. (O12.1) in this meeting.
In this presentation, we describe some technical details of the
implementation of the automated masking algorithm named “auto-
multithresh” which was integrated into the refactored imaging task
(tclean) in CASA. We also discuss our approach that we took for the
development, which loosely follows the iterative model, so that the
implementation is refined progressively for its functionality and
performance based on testing and updated requirements through out
prototyping in Python to the final production in C++.

Development Process
The main driver of this development was coming from the ALMA pipeline. There was a
research aspect to explore and refine an algorithm that work for the real ALMA data while
meeting various time constraints including the CASA release schedules. It was necessary to
adopt a development process slightly different from the standard CASA development, which
generally completes within a single CASA development cycle. To do this we had a team of a
dedicated developer for implementation and a scientist who led in design and verification as
well as other testers for additional scientific verifications.

The process of this development follows (loosely) the iterative model.
1. Define requirements
2. the initial prototype development
3. Initial implementation
4. Verification Testing (performance, scientific correctness)
5. Amend or add to the requirements, if necessary
6. Implementation of additional features, mitigation to performance issues
7. repeat 4 -6

The adopted process generally worked well to deliver of the necessary functionality on time
with flexibility of adding new features or making corrections in next iterations. However, one
of the disadvantages was that the significant dedicated time by the key members for both
code development and verification/validation testing was required. As for future projects of
this nature, the observatory is making an effort to plan to separate resources for production
from R&D efforts.

Current Status
• Available since CASA 5.0 release and various improvements were made ever since.
• Used in the production ALMA pipeline for Cy.5 and beyond
• While the original motivation was to be able use in ALMA imaging, it has been shown

that the algorithm works on the data from other telescopes such as JVLA and ATCA

Future Development
• For CASA 5.5, a new noise estimate will be implemented to improve masking of

absorption and extended emission
• As a future research, we plan to explore to improve code efficiency by moving a part

of the algorithm deeper inside the deconvolution algorithms

Example of “prune”

Example of “grow”

Input residual

Final mask (contour)

References
” Auto-multithresh: A General Purpose Automated Masking Algorithm for Clean”

Kepley et al., 2018, This conference (O12.0)
CASA Docs (SynthesisImaging->Masks for Deconvolution)

(https://casa.nrao.edu/casadocs/casa-5.4.1/synthesis-imaging/masks-for-deconvolution)

Figure 1. The auto-multithresh process (simplified view)

Repeat for
each minor cycle

Figure 2.
Implementation of auto-multithresh
within CASA

Auto-multithresh algorithm
A basic concept is to mimic interactive
masking done experienced astronomers
during CLEAN. A user can control the
parameter settings through the quantities
such as rms noise, sidelobe level, and
synthesized beam size. Figure 1 shows a
simplified flowchart describing some of the
key processes in auto-multithresh.

Key features are:
• Iterative (run at the beginning of minor

cycle)
• Threshold based mask created using a

current residual image
• “Prune” : mechanism to remove unrealistic

(or noise like) mask regions – regions
smaller than user-specifiable parameter in
fractions of synthesized beam

• “Grow”: grow the threshold based mask to
include low surface brightness regions –
using a binary dilation algorithm

• Handle negative (absorption) and positive
(emission) features – track separately to
avoid interaction

• For cube imaging, allow to skip channels
for no mask or no mask change from the
previous iteration

Implementation Details
Prototyping in Python
• The modular design of the refactored imaging code (C++

and Python) allows flexible implementation
• PySynthesisImager - A wrapper Python class built on

the top of the collection of the synthesis imaging
Python tools. The tclean CASA task build on top of
PySynthesisImager (see Figure 2)

• Each of the tools has one-to-one mapping of C++
classes and methods

• Prototyping by Python scripts can be easily
accomplished using PySynthesisImager

Final implementation of the algorithm in C++
• Auto-multithresh algorithm - part of a mask handling

C++ module within the refactored imager code
• Launched from the deconvolver to be in sync with its

iteration control

