
The CDS HEALPix library
In Java, Rust and WebAssembly

F.-X. Pineau & the CDS team
francois-xavier.pineau@astro.unistra.fr

Abstract
The CDS is releasing a new HEALPix library implemented in Java. Before

possibly porting it in C, we are experimenting with the Rust programming lan-
guage. It allows the library to be compiled into WebAssembly or native code,
and thus to easily plug it into web browsers, Python codes or PostgreSQL, to
name but a few. The library is distributed under the 3-clause BSD licence. It
focuses on our own needs, on performances and accuracy.

We are investigating the potential usage of the WebAssembly version into
Aladin Lite. The objective is twofold: supporting deeper orders (up to 24, the
present limit being 13), and changing the current GPL license to a less restric-
tive one. Aladin desktop has already started to resort to the Java version.

Unlike the “official” library, coming from the cosmology community, our
Java version do not currently supports Spherical Fourier Transformations and
do not support the RING scheme (also it is able to transform cells numbers
from the nested scheme to the ring scheme and vice-versa). In return, it do
support additional features like: distinguishing between cells partially and
fully overlapped by a cone; exact cells-overlapped-by-cone solution; very-fast
approximate cells-overlapped-by-cone function dedicated to cross-matches;
supporting self-intersecting polygons of any size; fast ordered list of small
cells surrounding a larger cell; MOC support in cells-overlapped-by-cone
queries; BMOC support (MOC with an additional flag for each cell); etc.

Motivations
The motivations bringing the CDS to develop an HEALPix library
from scratch are various.

Licence control
Switch from GPL (“official library”) to 3-clause BSD (“CDS li-
brary”) to change the Aladin Lite licence and be compatible with,
for example, the Astropy licence.

Internal expertise
Develop an internal expertise in a key component of both CDS ser-
vices and the HiPS IVOA standard.

Aladin Lite support
Bring the deepest addressable resolution from order 13 to order 24
and add support for polygons.

Easier evolutions
Make evolutions fitting with the CDS needs easier (mainly in Al-
adin, Aladin Lite and the X-match service).

Languages
Java

Since it is widely used at CDS (Aladin, SIMBAD, Cross-match ser-
vice, etc), the HEALPix library has been developed first in Java. All
features mentioned in this poster were made available in the Java
version.

Rust
Rust is a recent open-source language sponsored by Mozilla and
pursuing the trifecta: safety, concurrency, and speed (Rust weekly
newsletter). It aim at offering high-level ergonomics and low-level
control (online Rust book). Since it is a compiled language, we
use Rust to generate both WebAssembly files and static or dy-
namic libraries that can be called from Python or PostgreSQL. So
far, mainly basic HEALPix features meeting with the Aladin Lite
needs have been implemented in Rust (cell number from coordi-
nates, cell center, cell vertices, cell neighbours, approximate cells-
in-cone, projection/deprojection).

WebAssembly
WebAssembly is a bytecode standardized by the W3C and com-
patible with all recent Web browsers. It aims at complementing
Javascript, with better performances, and can be generated from
compiled languages like C, C++ or Rust.

C ?
Rust pre-compiled binaries are similar to C one’s and could be dis-
tributed in softwares like astropy. However, instaling Rust tools is
necessary if a user want to manually compile a module from the
source code. It is thus not straitforward to integrate Rust code in
large projects like astropy or PostgreSQL modules. It may bring us
to write a C version of the library.

Features
Comparing to the “standard library”, so far the CDS version

do not supports :

the RING scheme , but the library offers functions converting a
NESTED cell number into a RING cell number (and vice-versa).
For indexation purposes, the NESTED scheme (based on Z-order
curves) has better locality properties than the RING scheme.

spherical harmonics computations and Fast Fourier Transforms
which are extensively used in the cosmology community.

supports :

Projection/deprojection : compute Euclidean (X, Y) coordinates
from Spherical (α, δ) coordinates, and vice-versa. The library
contains an internal projection (see Fig. 1) and a version compat-
ible with the WCS HPX projection. The shifted-rotated internal

projection is used to compute the cells values (each of the 12 base
cells is sub-divided and indexed following a z-order curve)

0 1 2 3

4 5 6 7 4

8 9 10 11

x

y

bic = 0 bic = 1 bic = 2 bic = 3 bic = 4

bjc = 0

bjc = 1

bjc = 2

bjc = 3

bjc = 4 0

1

2

3

4

5

6

7

4

8

9

10

11

i

j

Figure 1: Left: HEALPix internal projection plane, showing the 12 base cells.
Right: shifted-rotated projection plane used to compute cells number.

Cell partially/fully-overlapped-by-cone : this binary coverage in-
formation allows to avoid useless time-consuming distances com-
putations when, e.g., performing a cone-search query on a table.

Exact cells-overlapped-by-cone solution : no false positive cells
in cone-search queries to avoid (again) useless distances compu-
tation, and possible disks accesses.

Largest center-to-vertex distance upper limit : depending on
both the order and the position of the cell on the sky. Used in
fast but approximative cells-overlapped-by-cone queries.

Figure 2: Computed upper limit (in blue) as a function of (α, δ) for the or-
der 8. Red: exact value computed for every order 8 cells. Plot made using
TOPCAT.

Very-fast approximate cells-overlapped-by-cone function : ded-
icated to map/reduce based cross-matches, in which the number
of sources in each cone is very small.

Fast ordered list of small cells surrounding a larger cell : used
for example to retrieve the list of sources in a large cell taking
into account border effects. The ordering is important to maxi-
mize the sequential access to data stored on spinning HDDs.

Self-intersecting polygons of any size : (see Fig. 3), also provides
the list of cells fully and partially overlapped by the polygon.
Like in the “official” library, we so far use an approximation: we
do as if a cell border between two vertices was on a great-circle.
An exact solution is possible but would be computationally less
efficient.

Figure 3: Example of MOC generated by a large scale self-intersecting poly-
gon in Aladin

Read-only BMOCs : a BMOC is an extension of a MOC but stor-
ing for each cell an additional status flags telling if the cell is
partially or fully covered by the area the MOC represents.

Extra axis-support : as an experiment, we added the possibility
to compute a cell number based on a spherical positions plus an
extra axis. One can imagine an additional z-axis to Fig. 1: the
12 base cells become 12 base cubes, each hierarchically divided
and indexed according to a 3D z-order curve. We still have to
implement queries returning 3D BMOCs.

Technical details

Projection: simplified equations
HEALPix is quite extensively described in Calabretta (2004), Górski
et al. (2005), Calabretta & Roukema (2007) and Reinecke & Hivon
(2015). It is first of all an equal-area projection composed from two
other projections. Internally we have chosen a projection scale such
that all coordinates in the projection plane are ∈ [0, 8[on the X-axis
and ∈ [−2, 2] on the Y -axis. The internal simplified equations are:
Collignon (pseudo-cylindrical equal-area) projection in the polar

caps, for α ∈ [0, π/2] and sin δ > 3/2: t =
√

3(1− sin δ)

X = (α4
π − 1)t + 1

Y = 2− t
⇒
{
α ∈ [0, π2]

sin δ ∈]23, 1]

t ∈ [0, 1[
X ∈]0, 2[
Y ∈]1, 2]

Cylindrical equal-area projection in the equatorial region:{
X = α× 4

π
Y = sin(δ)× 3

2
⇒
{
α ∈ [0, 2π] X ∈ [0, 8]

sin δ ∈ [−2
3,

2
3] Y ∈ [−1, 1]

+2

+1

−1

−2

0 1 2 3

4 5 6 7 4

8 9 10 11

x

y

+1

0

−1

0 1 2 3

4 5 6 7 4

8 9 10 11

x

y

Figure 4: Left: Collignon projection. Right: CEA projection.

Precision at poles
The formula t =

√
3(1− sin δ) causes non-negligible numerical inac-

curacies near the poles due to the 1− sin δ expression it contains:

• arcsin(1− 1.0× 10−15) ≈ 89.99999919 deg;

• π2 − arcsin(1− 1.0× 10−15) ≈ 2.917 mas.

We thus replaced the previous equation by the equivalent but numeri-

cally stable form: t =
√

6 cos(
δ

2
+
π

4
) .

Demo: 1− sin δ = 1 + cos(δ + π
2) = 2

1+cos(2(δ2+
π
4))

2 = 2 cos2(δ2 + π
4).

This form is also computationally less expensive since we spare a
time-consuming square-root operation (the square-root applying here
on a constant instead of a variable).

The exact cells-in-cone solution

0 1

4 5 6

8 9

x

y

.
A

.
B

Figure 5: Tissot’s indicatrices.

Let’s note Ωc, Ωp the sur-
face covered by the cone
and the cell (or pixel) re-
spectively. The basic cell
selection algorithm is:

• 4 vertices in the cone
⇒ Ωc ∩ Ωp = Ωp

• 1-3 vertices in the
cone⇒ Ωc ∩ Ωp 6= ∅
• cell contains a special

point⇒ Ωc ∩ Ωp 6= ∅
There is 4 + 1 special
points:

• 4 points such that the slope of the tangent line to the projected cone
on that point = ±1

• for large cells the center of the cone is also a special point

Computing the “special points” coordinates

We use the Haversine formula to get an accurate cone expression at
small radii:

∆α = 2 arcsin

√sin2 θ
2 − sin2 δ−δ0

2

cos δ0 cos δ


In the equatorial region, the equation of tangent lines is:

d∆X

dY
=

d∆X

d∆α

d∆α

dδ

dδ

dz

dz

dY
= ±1

The projection formulae: z = sin δ, X = 4/πα, Y = 3/2z lead to
d∆X
d∆α = 4/π, dδ

dz = 1
cos δ,

dz
dY = 2/3 and, finally, we find the special

points latitudes by solving numerically (Newton’s method):

1

cos δ

d∆α(δ)

dδ
∓ 3π

8
= 0 .

In the polar caps, the equation of tangent lines is:

d∆X

dY
=

d∆X

dδ

dδ

dz

dz

dY
= ±1

with z = sin δ, t =
√

3(1− z) =
√

6 cos(δ2 + π
4), X = (4

πα − 1)t + 1,
Y = 2 − t, leading to dδ

dz = 1
cos δ ,

dz
dY = 2

3t and, finally, we find the
special points latitudes by solving numerically (Newton’s method):

t(δ)

cos δ

d

dδ

[
(
4

π
α(δ)− 1)t(δ)

]
∓ 3

2
= 0 .

References
Calabretta, M. R. 2004, ArXiv Astrophysics e-prints. astro-ph/0412607

Calabretta, M. R., & Roukema, B. F. 2007, MNRAS, 381, 865

Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke,
M., & Bartelmann, M. 2005, ApJ, 622, 759. astro-ph/0409513

Reinecke, M., & Hivon, E. 2015, A&A, 580, A132. 1505.04632

François-Xavier Pineau (francois-xavier.pineau@astro.unistra.fr)
Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F–67000 Strasbourg, France

ADASS XXVIII, Astronomical Data Analysis Software & Systems
11 – 15 Nobvember 2018, College Park, Maryland, USA

