
Abstracting the storage and retrieval of image data at the LSST
Tim Jenness (AURA/LSST), James Bosch (Princeton), Pim Schellart (Princeton), K-T Lim (SLAC), Andy Salnikov (SLAC),
Michelle Gower (NCSA)

INTRODUCTION

HEADER TRANSLATION

SUMMARY

BUTLER IN USE

Writing generic data processing pipelines requires

that the algorithmic code does not ever have to know

about data formats of files, or the locations of those

files. At LSST we have a software system known as

"the Data Butler", that abstracts these details from

the software developer. Scientists can specify the

dataset they want in terms they understand, such as

filter, observation id, date of observation, and

instrument name, and the Butler translates that to

one or more files which are read and returned to

them as a single Python object. Conversely, once they

have created a new dataset they can give it back to

the butler, with a label describing its new status, and

the butler can write it in whatever format it has been

configured to use. All configuration is in YAML and

supports standard defaults whilst allowing overrides.

In order to be able to ingest instrument data into a

Butler repository the Butler has to understand some

properties of the instrument including filters, detector

information, and how to extract metadata from data

headers. We have written a separate Python package,

astro_metadata_translator, to support header

translation and metadata extraction for astronomical

instrument headers. New translators must be written

to allow the Butler to understand data during ingest.

Currently translators exist for DECam, CFHT

MegaPrime, and SuprimeCam and Hyper-SuprimeCam

from Subaru. This package solely depends on Astropy

and does not need any LSST infrastructure.

More Information
Butler documentation:

https://pipelines.lsst.io/v/daily/packages/daf_butler/

Schema overview: https://dmtn-073.lsst.io

LSST Data Management Overview: arXiv:1512.07914

LSST Design Overview: arXiv:0805.2366

BUTLER DATA MODEL

BUTLER COMPONENTS

The Butler consists of three core components:

Schema, Registry access, and Datastore. The Schema

defines the data model for relating datasets to each

other, and is defined consistently for all datasets. This

allows you to ask which datasets do I need to calibrate

this one, or which datasets were taken with this filter

between these dates. The Registry classes allow the

data model to be queried and are configurable via

plugins to allow different backend representations of

the data. Finally the Datastore deals with the reading

and writing of datasets themselves. There are

datastores for a POSIX file system, an in-memory

cache, and chained datastores (where writes go to all

datastores and reads pull from the first datastore to

return it). We intend to soon add support for object

stores. To support the Datastores “Formatters” have

to be written to serialize and deserialize Python

objects.

The Butler frees you from the worry of file formats

and file systems when your main concern is

processing and characterizing datasets. The Butler

system is not LSST-specific and is entirely driven by

external configuration to suit a specific use case. The

Butler will be released at the end of the year

alongside v17.0 of the LSST Science Pipelines.

Individual pipeline tasks work with Python objects.

They put datasets and retrieve datasets from the

Datastores. The Butler maps a Python object to a

serialization format through a “StorageClass” defined

in the YAML configuration files. Changing the

serialization format from FITS to HDF5 does not

require any code changes for the user. Pre-defined

components of a dataset, such as the WCS solution,

can be retrieved without reading the full dataset if

supported by the formatter.

The Butler data model is designed to understand the

relationships between observations and calibrations,

but also the how the sky can be segmented into

different regions. Each observation is linked to

corresponding patches on the sky map. These are

used to easily get an answer to the question of which

datasets should be included for a coadd of a particular

sky region.

Data Butler

Butler Client API

Schema

Registry Datastore

Registry
Plugin

Storage

Formatter Formatter

Science Pipelines

PipelineTask PipelineTask

Below is some user code for retrieving a calibrated

exposure of an HSC observation, transforming it, and

then storing a new version with a different dataset

type name.

https://pipelines.lsst.io/v/daily/packages/daf_butler/
https://dmtn-071.lsst.io/

