

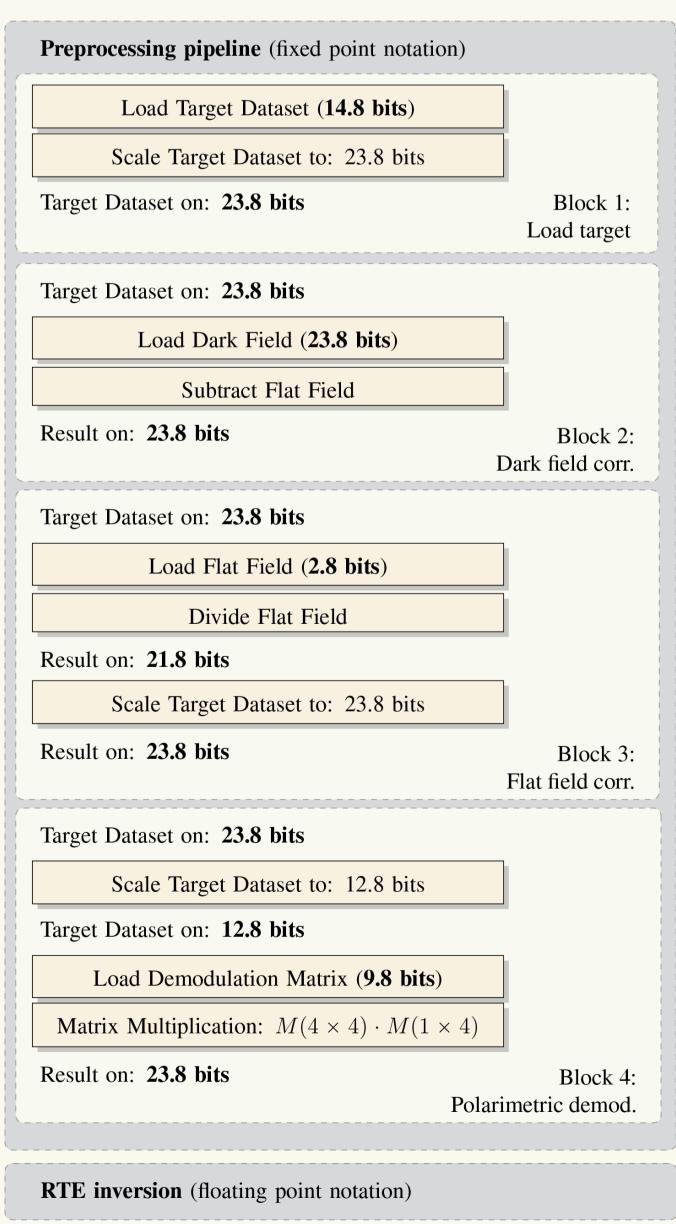
Data processing system **PHI on the Solar Orbiter** Solar Orbiter: A mission to orbit the Sun in highly elliptical orbits, leaving the ecliptic. SO/PHI: The first solar imaging spectropolarimeter on a deep space mission. SO/PHI flight model O-unit. using FPGA functions. Instrument principle: SO/PHI is aiming to infer photospheric \vec{B} , v_{LOS} and T by using Zeeman and Doppler effects. It takes time-series of images sampling the Fel 6173 Å absorption line at 6 Test pipeline: wavelengths, in 4 polarisation states. 0.900.85 0.75Target Dataset on: 23.8 bits 0.706172.50 6172.75 6173.00 6173.25 6173.50 6173.75 6174.00 6174.25 Target Dataset on: 23.8 bits λ (Å) Sampling of the absorption line by SO/PHI. Result on: 23.8 bits To meet some of the challenges imposed by SO, i.e dynamic environment and low data rates, SO/PHI Target Dataset on: 23.8 bits does full on-board science data processing: data Divide Flat Field pre-processing (removing the instrumental effects Result on: **21.8 bits** and polarimetric demodulation), and infers the physical parameters (through the inversion of the

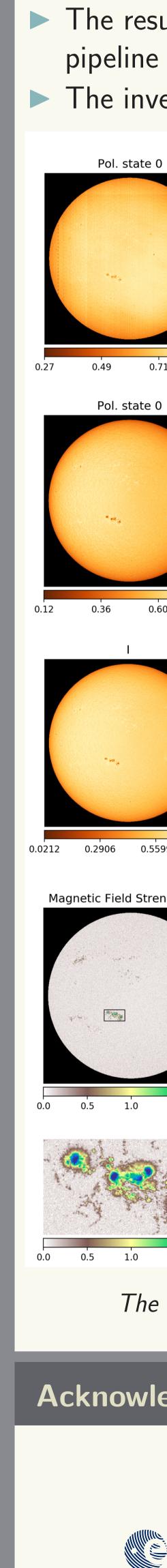
References

- [1] K. Albert, J. Hirzberger, D. Busse, et al. Autonomous on-board data processing and instrument calibration software for the SO/PHI. *Proceedings SPIE*, 707:10707 – 10707 – 9, 2018.
- [2] S.K. Solanki, J.C. del Toro Iniesta, J. Woch, et al. The Polarimetric and Helioseismic Imager. Astronomy and Astrophysics, Submitted.

[3] Daniel Müller, Richard George Marsden, OC St Cyr, et al. Solar orbiter. Solar Physics, 285(1-2):25-70, 2013.

radiative transfer equation, RTE).

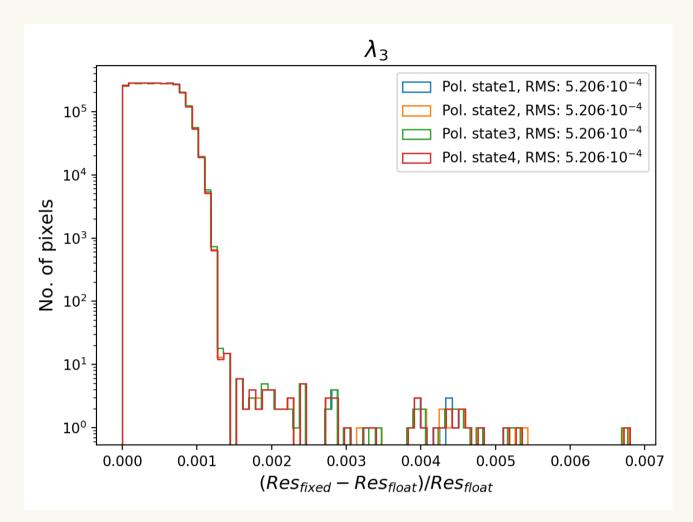

Performance analysis of the SO/PHI software framework for on-board data reduction K. Albert¹, J. Hirzberger¹, D. Busse¹, J. Blanco Rodríguez², J. S. Castellanos Duran¹, J. P. Cobos Carrascosa³, B. Fiethe⁴, A. Gandorfer¹, Y. Guan⁴, M. Kolleck¹, T. Lange⁴, H. Michalik⁴, S.K. Solanki¹, J. C. del Toro Iniesta³, J. Woch¹ ¹Max Planck Institute for Solar System Research, ²Univarsidad de Valencia, Paterna, ³Instituto de Astrofísica de Andalucía (IAA-CSIC), ⁴Insitute of Computer and Network Engineering at the TU Braunschweig Science data processing Results ► The results of the SO/PHI pipeline are compared to reference pipeline results calculated in floating point. The inversion of the RTE is done on ground for an impression. The SO/PHI DPU. Pol. state 0 Pol. state 1 Pol. state 2 Pol. state 3 ► To save resources the pre-processing uses a 24.8 bits 0.36 Demodulated (Stokes) images (λ_3) **Preprocessing pipeline** (fixed point notation) Load Target Dataset (14.8 bits) Scale Target Dataset to: 23.8 bits 0.015 - 0.015-0.0050 0 0 5 0.015 - 0.015Block 1: Load target Inversion results Magnetic Field Azimuth [deg] Magnetic Field Inclination [deg] Load Dark Field (23.8 bits) Subtract Flat Field Block 2: Dark field corr. Load Flat Field (2.8 bits) 135 180 -3.0 -1.5 0.0 1.5 -45 45 ALC A COMME


The data processing is implemented on a custom DPU, accelerated with 2 FPGAs reconfigured in flight. Pipelines are built in the microprocessor,

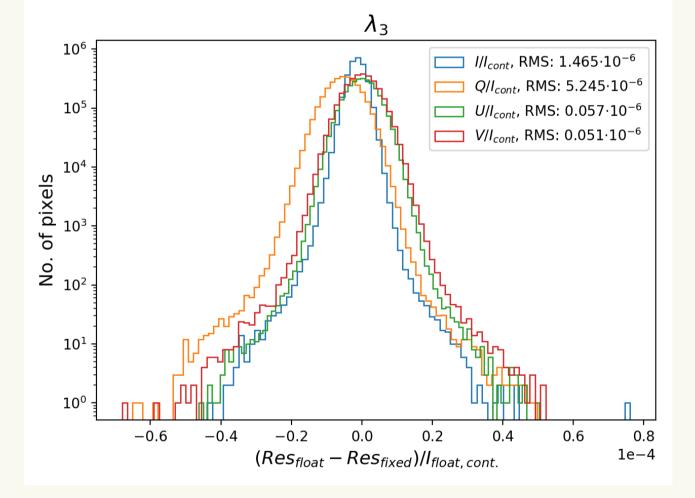
fixed point notation. To maintain accuracy the data is scaled at each step of the processing.

 $S_{\lambda}(x,y) = D(x,y) \cdot \left[(I_{\lambda}^{obs}(x,y) - I^{dark}(x,y)) / I^{flat}(x,y) \right]$

Data accuracy is controlled in the pipeline.



The input data, and the partial results of the tested pipeline.



The flat field division induces uniform errors in the whole data set, with a $5 \cdot 10^{-4}$ RMS.

Histogram of errors after flat field division.

The errors after the polarimetric demodulation decrease because in polarimetry we calculate the difference of signals. The requirement is 10^{-3} sensitivity. The error RMS is in the order of 10^{-6} .

Histogram of errors after polarimetric demodulation.

The inferred physical parameters have inaccuracies with an RMS of 0.14 G, 2° and 0.04° in the Bstrength, azimuth and inclination (calculated over strong magnetic regions). The v_{LOS} error RMS is $7 \cdot 10^{-3} \,\mathrm{ms}^{-1}$ over the full disk.

Conclusions

SO/PHI executes part of the data processing in fixed point notation to save resources.

The fixed point notations introduce errors far below the instrument requirements, leaving a large margin for other error sources.

The analysis of \mathcal{F} domain processing is ongoing.