
Challenges
User Interface: There are quite a few options for
doing the UI; web based using Django, or any of the
UI development tools, such as Qt. Django and Qt
have good Python integration, but since nothing has
been done yet, an even better alternative may
come up.
Metrics and Data Quality Assessment: Currently
we do not have much on measuring the incoming
data quality and for live data reduction this is
extremely important.
Process Control: We have developed a working
pipeline for data reduction at the end of the night,
the requirements for an on-site reduction might
differ in ways we can’t really preview. Also different
projects might have different approaches to data
reduction.
Faint Targets: We have intentionally left faint target
extractions under-developed because we assumed
they would show up in minor amounts, but at the
telescope the observer might want to see a preview
of a faint object’s spectrum.

A near real time Data Reduction Pipeline for the
Goodman High Throughput Spectrograph

Simón Torres-Robledo1, César Briceño1,2.
1SOAR Telescope, La Serena, Región de Coquimbo, Chile.

2Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile.

Simón Torres Robledo
SOAR Telescope
Email: storres@ctio.noao.edu
Website: https://github.com/simontorres
Phone: +56 51 2205348

Contact
1. Clemens, J. C., Crain, J. A., & Anderson, R. 2004, vol 5492 of

Proceedings of SPIE, 331.
2. Astropy Collaboration et. al., 2013, A&A, 558, A33.
3. Astropy Collaboration et. al., 2018, AJ, 156, 123.
4. Marsh, T. R., 1989, PASP, 101:1032-1037.
5. Pych, W., 2004, PASP, 116, 148.
6. Van Dokkum, P. G., 2001, PASP, 113, 1420.

References

The Goodman Spectroscopic Pipeline (goodman-
pipeline or GSP) is reaching some maturity and
behaving in a stable manner. Though its development
continues, we have started a parallel effort to develop a
real-time version of the GSP, which aims to obtaining

fully reduced data within seconds after the spectrum has
been obtained at the telescope. Most of the required
structure, algorithms and processes already exist with
the offline version of the GSP. The real-time or online
version differs in its requirements for flow control,

calibration files, image combination, reprocessing,
observing logging assistance, etc. Here we present an
outline of the route for implementation of a real time
online version.

Abstract

The live version of the pipeline has not been built yet,
however we have experimented with parts that we are
planning to use. From the technical point of view we
don’t see any particular challenge that we did not face
already. All the processing will be done using the
existing pipeline with the exception of the Data Quality
assessment part. We have not decided yet whether it
will be built as a submodule of the current project or as
an independent project. It will work by actions

triggered by file-system events. For instance, a new file
is added to the folder being monitored, the Hub (See
Figure 1) is notified and the file is copied over to a local
directory. Finally, the appropriate actions are triggered
in order to ensure that the file is processed accordingly,
this includes building master flats or master bias, show
a preview of the current processed file or waiting for
more images for combination.

GSP Live Version: Conceptual Design and workflow

Trying it out

Figure 1 . A proposed workflow schematic for the real time pipeline.
It could work on a single computer or two machines communicated
via a TCP/IP link.

The authors would like to acknowledge the important contributions from Bruno Quint, David
Sanmartim and Tina Armond.

This research made use of Astropy, a community-developed core Python package for
Astronomy (Astropy Collaboration, 2013 and 2018).

This work has been developed at the Southern Astrophysical Research (SOAR) telescope,
which is a joint project of the Ministério da Ciência, Tecnologia, Inovaçãos e Comunicações
do Brasil (MCTIC/LNA), the U.S. National Optical Astronomy Observatory (NOAO), the
University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

Acknowledgments

The latest version of the Goodman Spectroscopic
Pipeline (GSP) is the result of extensive
development over two years. Our initial goals were:
▪ Easy to use
▪ Well documented
▪ Written according to current standards
▪ Capable of producing science-quality results
In addition to meeting these goals, the GSP has the
following attributes:
• Wavelength solution: High precision, repeatable.
• Modular: Part of the code can be imported for

reuse.
• Integrated test: Automatically tested everyday.
• pip-installable: Since version v1.1.2
• Portable: The pipeline works on Linux and Mac.

Highlighted Features
Speed has not been a top requirement for the GSP.
This pipeline is specific for an instrument for which
the data production rate is modest and easily
manageable with existing resources. The focus of
our effort has been more on obtaining good
wavelength solutions. We found that the most
practical way for obtaining accurate and repeatable
wavelength solutions is to have a template library,
i.e. wavelength calibrated lamps for all possible
instrument configurations. The Goodman HTS has
20 fixed instrument configurations and six possible
comparison lamps choices which gives a total of
120 lamps required for the template library to be
complete.

Current Performance

We have developed a conceptual design for a live
version of the Goodman Spectroscopic Pipeline. It
will use most of the routines already developed for
GSP for data processing, but it will also require
other tools to be developed, such as an user
interface and some robust data quality assessment
routines.
We continue committed to developing open source
software using as much Astropy-affiliated packages
as possible. Though we have been discussing the
creation of the live version of the GSP for quite
some time, this is our first approach to putting
everything together. There are many iterations to
go through, but ultimately it will be the final users
that will define, in great measure, what the end
product will look like.

Conclusion

Because we don’t have staffing resources to provide
technical support for installation, we have set up a
server located in the telescope computer room that
users can access via a VNC session. However
installation is easy:

pip install goodman-pipeline

This will install everything except DCR, the cosmic
ray rejection routine, which you can install
following the instructions in the documentation.
The full documentation can be found at
https://goodman.readthedocs.io or by scanning the
QR code below.

New Dependencies
Pyinotify: Is a filesystem events monitor, it is better
than others because it notifies when the file has
been closed after writing, i.e. file is complete.
Zmq: Is a high performance asynchronous
messaging library, it allows to communicate
processes using many languages and protocols.

ReadTheDocs GitHub

https://goodman.readthedocs.io/

