
Utilizing Conda for Fermi Data 

Analysis Software Releases

Joe Asercion (ADNET Systems/GSFC) and the Fermi Science Support Center Team

fermi.gsfc.nasa.gov/ssc

Abstract

Fermi Gamma-Ray Space Telescope mission provides, via the Fermi Science Support Center (FSSC), a suite of data analysis tools to assist the high energy astrophysics

community in working with Fermi data. For many years these tools were distributed via both precompiled binaries and source tarball downloads on the FSSC’s website. Due to the

complexity of the tools and restrictions on development the downloads carried with them a large complement of third-party software which often caused package conflicts on

user’s machines and bloated the size of the complete analysis package. To alleviate these problems the Fermi development team has decided to update the distribution pipeline to

utilize the Conda package management system. This has allowed the development team to greatly reduce the software package size, eliminate a large category of bugs which

once were prevalent, and target a decrease in software update turnaround/release time. This poster will outline the process the development team took to convert our legacy

codebase into a Conda compatible form and outline the lessons learned throughout this process.

Previous release system and a need for change

In the past the FSSC would generate precompiled binaries and source code

tarballs that were available for download by the public. While functional, this

development cycle had a number of issues which greatly extended the time

between releases.

The software development team for the tools was effectively serving two

customers: the internal organization users and the public users which were

supported by the FSSC. Legacy design decisions prompted the creation of two

separate software repositories and build systems. Changes checked in and

validated at the developer level would be package and sent to the FSSC, where the

code would be merged into the FSSC repository, revalidated, and reverified.

Often, due to differences in the build systems and host machines a number of

issues would need to be addressed with the third party packages distributed with

the tools before unit testing could begin. This greatly slowed down the

development cycle and increased maintenance developer workload.

The fact that the final distributed software product contained these third party

packages also made the tools prone to errors arising from incompatibilities with

software already present on the user’s machine. Library collisions and version

incompatibilities accounted for a large percentage of technical helpdesk requests.

As part of a general overhaul of the Fermitools development cycle the decision was

made to offload management of dependencies to a package management system

in order to increase ease of distribution, reduce the codebase size, and better

handle the suite’s complex set of software dependencies

Why Conda?

Previous to the decision to move to a package management

system there were ongoing discussions about replacing the

version of Python2.7 that was distributed with the tools with

Anaconda python due to its prevalence in the Fermi analysis

community and the number of modules built into Anaconda

which were already used by the tools. This proposed change

along with the wide use of python for Fermi data analysis in

general made the Conda Package Manager a natural choice.

Conda also allows for easy packaging and distribution of the

analysis tools via the Conda Build utility and the Anaconda

Cloud, respectively. The ability to take advantage of the Conda-

Forge github organization’s CI toolchain for long term

maintenance of FSSC maintained dependencies was viewed as

another major benefit.

What is Conda?

Conda is the native package management system in Anaconda and Miniconda python distributions. Developed and maintained by Anaconda, Inc

(formally Continuum Analytics), it is released under the Berkely Software distribution license. Conda is open source, cross-platform, and language-

agnostic.

In addition to package management functionality Conda also has environment management capability. Conda environments allow users to create

self-contained installation environments for software. This prevents software installed by Conda from conflicting with software that is already

installed on the user's machine or in separate conda environments. A major benefit of this functionality is that software with conflicting

dependencies can coexist within the same Anaconda installation so long as they are located within different Conda environments. Unlike pip, Conda

can also install different versions of python. This is incredibly useful in situations where a user needs to have access to software which requires

either python2 or python3 without having to install/configure multiple versions of python in their user environment.

Conda pulls precompiled software from channels hosted on the Anaconda Cloud. While the Anaconda channel is default, users can specify what

channels they would like Conda to search and the channel priority in the search order. Due to the complex set of dependencies that the Fermitools

uses this is a critical feature. The FSSC supplies a required channel list to users who wish to install the Fermitools in order to ensure that the correct

dependencies of the software are selected.

Conda Packaging

Conda uses a built-in utility name Conda Build to package compiled

binaries in a format suitable for upload to the Anaconda Cloud. To

provide Conda Build with the instructions it needs to properly

assemble the target software two files (at a minimum) need to be

provided to the utility as part of a 'recipe': meta.yaml, which defines

the build and runtime meta data of the package being built and

build.sh, a bash script which directly instructs conda build in how to

compile and assemble the target software.

To assemble the binaries Conda Build uses a temporary directory tree

that it creates within Anaconda’s directory structure to hold the

source code and various build products generated during the

execution of the build.sh script. Once compilation and testing (as

outlined by the meta.yaml file) are complete Conda Build compresses

the binary build products along with several files containing package

metadata and produces a tarball. This tarball can then be uploaded

to a specified Anaconda Cloud channel for distribution to the

community.

Transition Process

After consolidating the Fermitools codebase a number of changes needed to be

made to the tools to accommodate the Conda Build system. Despite being

compiled and packaged as a monolithic software distribution the tools themselves

are maintained as separate subpackages which depend on one another. To

address this issue, the build.sh script included in the Fermitools recipe was

modified to call a customized tool which had been designed specifically to

properly conduct checkouts of Fermi-lat git organization software. After checkout,

Conda Build is instructed to compile the Fermitools using a specialized Scons

command. Special handling for additional data files is also included within the

build.sh to ensure that necessary models and reference code is included in the

packaged tarball.

The meta.yaml file lists the dependencies that are required installations for the

Fermitools to run properly. All of the dependencies listed for both the build and

run stages are pinned to specific versions in order to prevent possible issues

caused by the third party package maintainers updating their code. The vast

majority of the Fermitools dependencies are retrieved for the Conda-Forge

Anaconda channel. Conda-Forge is a github organization which contains a

number of Conda recipes that are automatically tested and built using a

Continuous Integration chain (AppVeyor, TravisCI, and CircleCI) to build, test, and

make available for download a number of different community maintained

packages. The FSSC maintains several of the Fermitools dependencies within

Conda-Forge to take advantage of the CI tools which the organization offers.

Necessary data files, and a few irregular software dependencies, are distributed

by the FSSC on a separate 'fermi' Anaconda Cloud channel. The decision to

separate out the data files from the primary software package allows for much

more flexibility and ease in updating the data and streamlines the organization of

the Fermitools source code.

Result

The Fermitools is currently available to public download from the Fermi anaconda

channel (for instructions on how to install the Fermitools see the section 'Obtaining

the Fermitools’).

Size Reduction in Primary Distribution

As noted above, stripping third party dependencies from the Fermi data analysis suite

substantially reduced the size of the software package that is directly managed and

distributed by the FSSC.

While the dependencies must still be managed directly and version compatibility must

still be monitored/tested the use of the Conda package management system simplifies

this process and allows developers to focus more on the core tools.

Obtaining the Fermitools

To install the Fermitools first a version of Anaconda Python needs to be installed. Either Anaconda or Miniconda will do, however, the FSSC

recommends Miniconda as it is more lightweight. It is highly recommended that the Python2.7 version of Anaconda/Miniconda be installed. The

tools Python2 at this time and while it is possible to install a different version of python in the tool's Conda environment for most users this is an

unnecessary complication.

At the end of installation Conda will ask to append the its location to the front of the user's PATH in their bashrc file. Users who prefer tcsh/csh must

perform an additional step to ensure that their Conda installation works properly in their shell:

source </path/to/conda>/etc/profile.d/conda.csh

must be appended to their ~/.cshrc or ~/.tcshrc file. </path/to/conda> is replaced with the path to the top level directory of the Anaconda installation

(typically named something like "Miniconda2"). This is because, while Anaconda natively supports the BASH shell, it does not yet automatically

complete setup for csh/tcsh.

After completing installation of the tools, a user need only run the command

conda create --name fermi -c conda-forge -c fermi fermitools

To create a Conda environment named 'fermi' and install the latest release version of the Fermitools into it (currently v1.0.0). Once this process is

complete, the user needs only to activate the environment with the appropriate command for their shell:

After activation the user will have access to the full suite of Fermitools installed in the 'fermi' environment.

ScienceTools-v11r5p3-fssc-20180124 Fermitools (Tools + Data)

Mac Binary 1.44 GB (Darwin 16.7 Binary) 78.4 MB+ 497.8 MB

Linux Binary 1.94 GB (Scientific Linux 7 Binary) 156.5 MB + 497.8 MB

Bash Tcsh/csh

source activate fermi conda activate fermi

For More Information

Fermi Science Support Center:

Fermitools Wiki:

Fermi Anaconda Channel:

Conda Documentation:

Conda Build Documentation:

Conda-Forge:


