
  

Applications of the in-memory database Redis 
in processing transient event alerts

Min-Su Shin (Korea Astronomy and Space Science Institute) msshin@kasi.re.kr

1. Introduction

We use the Redis in two different ways for processing alerts: 

1) the publication-subscription model as a message delivery system for multiple local alert clients, 
2) storing spatial information to enable low-latency matching of transient locations with (custom) catalogs.

The current system collects event alerts by using VOEvent streams and detecting changes in web pages/feeds. 

3. Redis: GeoSet (a sorted set with latitude and longitude)

Low-latency in-memory spatial data store for astronomical coordinates.

-We modify the Redis source code to deal with astronomical coordinates as 
presented in the ADASS XXVII.
-Custom catalogs with coordinates are stored and managed by each subscriber.
-A Redis server serves frequently used catalogs such as Gaia DR2 sources.
-Typical search response time is ~ microseconds to milliseconds.

2. Redis: pub-sub model

The system is made of:

1) message collectors of VOEvent alerts, web pages, RSS feeds, etc., 
publishing the messages to the Redis for local message subscribers,

2) message analyzers conducting a specific task such as storing the 
message in a time-series database, filtering out the messages, cross-
matching the message to preexisting catalogs, etc.

The modular structure allows the KASI members to add their own 
publishers and subscribers to the current system for given local APIs.

5. Plan

-Conducting load tests with the current system and comparing it to the new one with the NATS and Tile38.
-Including the low-latency machine learning classification/ranking algorithm in the current system APIs.

Example subscribers

-Subscribers for specific observing facilities such as the Korean VLBI 
network and the Korean Microlensing Telescope Network: filtering and 
ranking alerts and producing customized notices for the observatories.

def ingest_file_into_redis(in_fn, redis_hostname):
    redis_pos_key = 'CC'
    in_key_prefix = 'CC_'
    with open(in_fn, 'r') as fd:
        fd.readline() # header
        for oneline in fd.readlines():
            temp = oneline.strip().split()
            redis_value_key = in_key_prefix + temp[0]
            use_name2 = temp[1]
            use_ra = temp[2] # deg
            use_dec = temp[3] # deg
            use_z = temp[4]
            use_r500 = temp[5] # deg
            use_list = [use_name2, use_ra, use_dec, use_z, 
use_r500]
            reference.ingest_redis_coord_value(redis_pos_key,      
use_ra, use_dec, redis_value_key, use_list, redis_hostname)
        fd.close()

Current implementation: Redis

KASI

Publisher
(message collector)

Subscriber
(message analyzer)

-Subscribers for specific science projects: the  
specialized analysis of alerts and ingesting/searching 
with local alert and science object databases.
-Subscribers for monitoring and development: 
testing machine learning algorithms of low-latency 
classification for given limited amount data in alerts.

E-mail notice

Web notice

Incoming message

Subscriber process

Local custom catalog
database

Remote common 
catalog database

Ingestion of a custom catalog

4. Exploring migration to NATS and Tile38

We are exploring the possibility of  using NATS for the large-scale pub-sub 
model implementation and using Tile38 for the low-latency spatial search with 
various query types. The goal is a horizontally easily scalable system in the 
framework of cloud computing to process 2 million messages per hour.

-NATS is an open-source, cloud-native messaging system. We are testing the 
NATS Streaming's pub-sub implementation.
-Tile38 supports more types of spatial query than Redis. We modified Tile38!

Tile38 can store about 10M coordinates with  about 5GB 
memory.

The both tools can be easily deployed by Kubernetes in the cloud 
computing environment.https://tile38.com/


